OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 3241–3250

Fiber Fabry-Perot sensors for detection of partial discharges in power transformers

Bing Yu, Dae Woong Kim, Jiangdong Deng, Hai Xiao, and Anbo Wang  »View Author Affiliations


Applied Optics, Vol. 42, Issue 16, pp. 3241-3250 (2003)
http://dx.doi.org/10.1364/AO.42.003241


View Full Text Article

Enhanced HTML    Acrobat PDF (497 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A diaphragm-based interferometric fiber optic sensor that uses a low-coherence light source was designed and tested for on-line detection of the acoustic waves generated by partial discharges inside high-voltage power transformers. The sensor uses a fused-silica diaphragm and a single-mode optical fiber encapsulated in a fused-silica glass tube to form an extrinsic Fabry-Perot interferometer, which is interrogated by low-coherence light. Test results indicate that these fiber optic acoustic sensors are capable of faithfully detecting acoustic signals propagating inside transformer oil with high sensitivity and wide bandwidth.

© 2003 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot

History
Original Manuscript: September 16, 2002
Revised Manuscript: January 21, 2003
Published: June 1, 2003

Citation
Bing Yu, Dae Woong Kim, Jiangdong Deng, Hai Xiao, and Anbo Wang, "Fiber Fabry-Perot sensors for detection of partial discharges in power transformers," Appl. Opt. 42, 3241-3250 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-3241


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Inoue, K. Suganuma, M. Kamba, M. Kikkawa, “Development of oil-dissolved hydrogen gas detector for diagnosis of transformers,” IEEE Trans. Power Deliv. 5, 226–232 (1990). [CrossRef]
  2. W. A. Pledger, S. C. Pyke, “Gas monitor update: review of progress in the development of a microelectronic in-situ transformer fault gas analyzer,” in EPRI Substation Equipment Diagnostics Conference (Electrical Power Research Institute, Palo Alto, Calif., 1994).
  3. J. W. Abbott, D. Chu, A. E. Diamond, H. A. ElBadaly, C. S. Slemon, “Development of an automated transformer oil monitor (ATOM),” in EPRI Substation Equipment Diagnostics Conference (Electrical Power Research Institute, Palo Alto, Calif., 1994).
  4. L. E. Lundgaard, “Partial discharge. XIII. Acoustic partial discharge detection—fundamental considerations,” IEEE Electr. Insul. Mag. 8(4), 25–31 (1992). [CrossRef]
  5. L. E. Lundgaard, “Partial discharge. XIV. Acoustic partial discharge detection—practical application,” IEEE Electr. Insul. Mag. 8(5), 34–43 (1992). [CrossRef]
  6. H. Kawada, M. Honda, T. Inoue, T. Amemiya, “Partial discharge automatic monitor for oil-filled power transformer,” IEEE Trans. Power Appar. Syst. PAS-103, 422–428 (1984). [CrossRef]
  7. E. Howells, E. T. Norton, “Location of partial discharge sites in on-line transformers,” IEEE Trans. Power Appar. Syst. PAS-100, 158–161 (1981). [CrossRef]
  8. P. M. Eleftherion, “Partial discharge. XXI. Acoustic emission-based PD source location in transformers,” IEEE Electr. Insul. Mag. 11, 22–26 (1995). [CrossRef]
  9. B. Culshaw, “Basic concepts of optical fiber sensors,” in Optical Fiber Sensors: Principles and Components, J. Dakin, B. Culshaw, eds. (Artech House, Boston, Mass., 1988), Chap. 2.
  10. J. A. Bucaro, H. D. Dardy, E. Carome, “Fiber optic hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977). [CrossRef]
  11. A. Dandridge, A. D. Kersey, “Overview of Mach-Zehnder sensor technology and applications,” in Selected Papers on Fiber Optic Sensors, R. Willsch, R. Th. Kersten, eds., Vol. MS 108 of SPIE Milestone Series (Society of Photo-Optical and Instrumentation Engineers, Bellingham, Wash., 1995), pp. 216–234.
  12. M. F. Gunther, A. Wang, B. R. Fogg, K. A. Murphy, R. O. Claus, “Fiber optic impact detection and location system embedded in a composite material,” in Fiber Optic Smart Structures and Skins V, R. O. Claus, R. S. Rogowski, eds., Proc. SPIE1798, 262–269 (1992). [CrossRef]
  13. J. A. Greene, T. A. Tran, V. Bhatia, M. F. Gunther, A. Wang, K. A. Wang, R. O. Claus, “Optical fiber sensing technique for impact detection and location in composites and metal specimens,” J. Smart Mater. Struct. 4, 93–99 (1995). [CrossRef]
  14. N. Furstenau, M. Schmidt, H. Horack, W. Goetze, W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997). [CrossRef]
  15. J. Teunissen, C. Helmig, R. Merte, D. Peier, “Fiber optical on-line monitoring for high-voltage transformers,” in SPIE International Symposium on Environmental and Industrial Sensing: Fiber Optic Sensor Technology II, M. A. Marcus, B. Culshaw, M. Saad, J. A. Harrington, eds., Proc. SPIE4204, 198–205 (2001). [CrossRef]
  16. Z. Zhao, M. MacAlpine, M. Süleyman Demokan, “The directionality of an optical fiber high-frequency acoustic sensor for partial discharge detection and location,” J. Lightwave Technol. 18, 795–805 (2000). [CrossRef]
  17. R. O. Claus, M. F. Gunther, A. Wang, K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurement from -200 to 900 °C,” J. Smart Mater. Struct. 1, 237–242 (1992). [CrossRef]
  18. K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, “Detection of acoustic emission location using optical fiber sensors,” in Smart Structures and Materials 1994: Smart Sensing, Processing, and Instrumentation, J. S. Sirkis, ed., Proc. SPIE2191, 282–290 (1994). [CrossRef]
  19. A. Wang, M. S. Miller, A. J. Plante, M. F. Gunther, K. A. Murphy, R. O. Claus, “Split-spectrum intensity-based optical fiber sensors for measurement of microdisplacement, strain and pressure,” Appl. Opt. 35, 2595–2601 (1996). [CrossRef] [PubMed]
  20. J. Wang, W. Zhao, H. Xiao, A. Wang, “Self-calibrated interferometric/intensity-based optical fiber sensors,” in Sensors and Controls for Advanced Manufacturing, B. O. Nnaji, A. Wang, eds., Proc. SPIE3201, 20–26 (1998). [CrossRef]
  21. J. Deng, H. Xiao, W. Huo, M. Luo, R. May, A. Wang, Y. Liu, “Optical fiber sensor-based detection of partial discharges in power transformers,” Opt. Laser Technol. 33, 305–311 (2001). [CrossRef]
  22. W. Pulliam, P. Russler, R. Mlcak, K. Murphy, C. Kozikowski, “Micromachined, SiC fiber optic pressure sensors for high temperature aerospace applications,” in Industrial Sensing Systems, A. Wang, E. Udd, eds., Proc. SPIE4202, 21–30 (2000). [CrossRef]
  23. Y. N. Ning, K. T. V. Grattan, A. W. Palmer, “Fiber-optic interferometric systems using low-coherence light sources,” Sens. Actuators A 30, 181–192 (1992). [CrossRef]
  24. M. Born, E. Wolf, Principle of Optics (Oxford U. Press, Oxford, 1980), pp. 360–367.
  25. M. Schmidt, N. Fürstenau, “Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation,” Opt. Lett. 24, 599–601 (1999). [CrossRef]
  26. R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991). [CrossRef] [PubMed]
  27. C. M. Miller, S. C. Mettler, I. A. White, Optical Fiber Splices and Connectors (Marcel Dekker, New York, 1986), pp. 144–150.
  28. M. Di Giovanni, Flat and Corrugated Diaphragm Design Handbook (Marcel Dekker, New York, 1982), Chap. 12.
  29. M. Di Giovanni, Flat and Corrugated Diaphragm Design Handbook (Marcel Dekker, New York, 1982), Chap. 17.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited