OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 3251–3258

Erbium-doped optical fiber fluorescence temperature sensor with enhanced sensitivity, a high signal-to-noise ratio, and a power ratio in the 520–530- and 550–560-nm bands

Gonzalo Paez and Marija Strojnik  »View Author Affiliations

Applied Optics, Vol. 42, Issue 16, pp. 3251-3258 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze and predict the performance of a fiber-optic temperature sensor from the measured fluorescence spectrum to optimize its design. We apply this analysis to an erbium-doped silica fiber by employing the power-ratio technique. We develop expressions for the signal-to-noise ratio in a band to optimize sensor performance in each spectral channel. We improve the signal-to-noise ratio by a factor of 5 for each channel, compared with earlier results. We evaluate the analytical expression for the sensor sensitivity and predict it to be approximately 0.02 °C-1 for the temperature interval from room temperature to above 200 °C, increasing from 0.01 °C-1 at the edges of the interval to 0.03 °C-1 at the center, at 100–130 °C. The sensitivity again increases at temperatures higher than 300 °C, delineating its useful temperature intervals.

© 2003 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2410) Fiber optics and optical communications : Fibers, erbium
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(120.6780) Instrumentation, measurement, and metrology : Temperature
(300.2530) Spectroscopy : Fluorescence, laser-induced

Original Manuscript: January 30, 2003
Published: June 1, 2003

Gonzalo Paez and Marija Strojnik, "Erbium-doped optical fiber fluorescence temperature sensor with enhanced sensitivity, a high signal-to-noise ratio, and a power ratio in the 520–530- and 550–560-nm bands," Appl. Opt. 42, 3251-3258 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Scholl, “Temperature calibration of an infrared radiation source,” Appl. Opt. 19, 3622–3625 (1980). [CrossRef] [PubMed]
  2. M. S. Scholl, “Thermal considerations in the design of a dynamic IR target,” Appl. Opt. 21, 660–667 (1982). [CrossRef] [PubMed]
  3. M. S. Scholl, “Spatial and temporal effects due to target irradiation: a study,” Appl. Opt. 21, 1615–1620 (1982). [CrossRef] [PubMed]
  4. M. S. Scholl, “Errors in radiance simulation and scene discrimination,” Appl. Opt. 21, 1839–1843 (1982). [CrossRef] [PubMed]
  5. M. S. Scholl, “Target temperature distribution generated and maintained by a scanning laser beam,” Appl. Opt. 21, 2146–2152 (1982). [CrossRef] [PubMed]
  6. J. Castrellon, G. Paez, M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43, 219–222 (2002). [CrossRef]
  7. M. S. Scholl, J. R. Trimmier, “Luminescence of YAG:TM:Tb,” J. Electrochem. Soc. 133, 643–648 (1986). [CrossRef]
  8. K. A. Wickersheim, W. D. Hyatt, “Commercial applications of fiber optic temperature measurement,” in Fiber Optic Sensors IV, R. T. Kersten, ed., Proc. SPIE1267, 84–96 (1990). [CrossRef]
  9. E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “High dynamic range temperature point sensor using green fluorescence intensity ratio in erbium-doped silica fiber,” J. Lightwave Technol. 13, 1349–1353 (1995). [CrossRef]
  10. M. Strojnik, G. Paez, “Radiometry,” in Handbook of Optical Engineering, D. Malacara, B. Thompson, eds. (Marcel Dekker, New York, 2001), pp. 649–699.
  11. J. Castrellon, G. Paez, “Radiometric figures of merit of a fiber optic temperature sensor,” in Infrared Spaceborne Remote Sensing VII, M. Strojnik, B. F. Andresen, eds., Proc. SPIE3759, 410–421 (1999). [CrossRef]
  12. F. C. Allard, Fiber Optics Handbook for Engineers and Scientists (McGraw-Hill, New York, 1990).
  13. H.-S. Choi, H. F. Taylor, C. E. Lee, “High-performance fiber-optic temperature sensor using low-coherence interferometry,” Opt. Lett. 22, 1814–1816 (1997). [CrossRef]
  14. E. Snitzer, W. W. Morey, W. H. Glenn, “Fiber optic rare earth temperature sensors,” in First International Conference on Optical Fibre Sensors, Vol. CDP01 (SPIE Press, Bellingham, Wash., 1983), pp. 79–82.
  15. H. Berthou, C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett. 15, 1100–1102 (1990). [CrossRef] [PubMed]
  16. M. C. Farries, M. E. Fernmann, R. I. Laming, S. B. Poole, D. N. Payne, A. P. Leach, “Distributed temperature sensor using Nd3+-doped optical fibre,” Electron. Lett. 22, 418–419 (1986). [CrossRef]
  17. P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73, 578–580 (1998). [CrossRef]
  18. Z.-Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Thulium-doped intrinsic fiber optic sensor for high temperature measurements (1100 °C),” Rev. Sci. Instrum. 69, 3210–3214 (1998). [CrossRef]
  19. T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, S. F. Collins, “Temperature dependence of the fluorescence lifetime in Pr3+: ZBLAN glass for fiber optic thermometry,” Rev. Sci. Instrum. 68, 3447–3451 (1997). [CrossRef]
  20. E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, G. W. Baxter, “Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+-doped silica fiber,” Appl. Opt. 36, 8264–8269 (1997). [CrossRef]
  21. E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “1.2-μm transitions in erbium-doped fibers: the possibility of quasi-distributed temperature sensors,” Appl. Opt. 34, 4196–4199 (1995). [CrossRef] [PubMed]
  22. E. Maurice, G. Monnom, B. Dussardier, A. Saissy, D. B. Ostrowsky, G. W. Baxter, “Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors,” Appl. Opt. 34, 8019–8025 (1995). [CrossRef] [PubMed]
  23. P. A. Krug, M. G. Sceats, G. R. Atkins, S. C. Guy, S. B. Poole, “Intermediate excited-state absorption in erbium-doped fiber strongly pumped at 980 nm,” Opt. Lett. 16, 1976–1978 (1991). [CrossRef] [PubMed]
  24. E. Maurice, G. Monnom, B. Dussardier, A. Saissy, D. B. Ostrowsky, G. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19, 990–992 (1994). [CrossRef] [PubMed]
  25. C. G. Atkins, J. R. Armitage, R. Wyatt, B. J. Ainslie, S. P. Craig-Ryan, “Pump excited state absorption in Er3+ doped optical fibres,” Opt. Commun. 73, 217–222 (1989). [CrossRef]
  26. R. A. Betts, F. F. Kuhl, T. M. Kwok, G. F. Zheng, “Optical amplifiers based on phosphorus co-doped rare-earth-doped optical fibres,” Int. J. Optoelectron. 6, 47–64 (1991).
  27. G. Paez, M. S. Scholl, “Thermal contrast detected with a thermal detector,” Infrared Phys. Technol. 40, 109–118 (1999). [CrossRef]
  28. G. Paez, M. S. Scholl, “Thermal contrast detected with a quantum detector,” Infrared Phys. Technol. 40, 261–266 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited