OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 3277–3283

Confocal total-internal-reflection fluorescence microscopy with a high-aperture parabolic mirror lens

Thomas Ruckstuhl and Stefan Seeger  »View Author Affiliations


Applied Optics, Vol. 42, Issue 16, pp. 3277-3283 (2003)
http://dx.doi.org/10.1364/AO.42.003277


View Full Text Article

Enhanced HTML    Acrobat PDF (875 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical study of a new total-internal-reflection fluorescence microscope for the detection of fluorescence at a water-glass interface. The system is designed for confocal imaging and spectroscopy of nanoparticles and single molecules. Focusing and fluorescence collection through standard glass coverslips is accomplished by a parabolic mirror lens. The large aperture of the element is used to excite fluorescence within the evanescent field of a diffraction-limited focus and to collect focal emission with high efficiency. Tight focusing and supercritical excitation reduce the detection volume for fluorescent analyte molecules well below that of an attoliter (10-18 L), which can be advantageous for monitoring surface binding of single molecules without interference from fluorescence of the unbound bulk. Calculations of the electric fields in the focus region and simulated confocal imaging demonstrate the performance of the system.

© 2003 Optical Society of America

OCIS Codes
(080.3620) Geometric optics : Lens system design
(110.0180) Imaging systems : Microscopy
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(260.6970) Physical optics : Total internal reflection

History
Original Manuscript: September 16, 2002
Revised Manuscript: January 22, 2003
Published: June 1, 2003

Citation
Thomas Ruckstuhl and Stefan Seeger, "Confocal total-internal-reflection fluorescence microscopy with a high-aperture parabolic mirror lens," Appl. Opt. 42, 3277-3283 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-3277


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Axelrod, “Total internal reflection fluorescence microscopy,” in Methods in Cellular Imaging, A. Periasamy, ed. (Oxford U. Press, New York, 2001), pp. 362–380. [CrossRef]
  2. A. D. Stout, D. Axelrod, “Evanescent field excitation of fluorescence by epi-illumination microscopy,” Appl. Opt. 28, 5237–5242 (1989). [CrossRef]
  3. W. P. Ambrose, T. Basché, W. E. Moerner, “Detection and spectroscopy of single pentacene molecules in a p-terphenyl crystal by means of fluorescence excitation,” J. Chem. Phys. 95, 7150–7163 (1991). [CrossRef]
  4. L. Fleury, P. Tamarat, B. Lounis, J. Bernard, M. Orrit, “Fluorescence spectra of single pentacene molecules in p-terphenyl at 1.7 K,” Chem. Phys. Lett. 236, 87–95 (1995). [CrossRef]
  5. H. van der Meer, J. A. J. M. Disselhorst, J. Koehler, A. C. J. Brouwer, E. J. J. Groenen, J. Schmidt, “An insert for single-molecule magnetic-resonance spectroscopy in an external magnetic field,” Rev. Sci. Instrum. 66, 4853–4856 (1995). [CrossRef]
  6. T. Ruckstuhl, S. Jung, J. Enderlein, S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72, 2117–2123 (2000). [CrossRef] [PubMed]
  7. A. Drechsler, M. A. Lieb, C. Debus, A. J. Meixner, A. Tarrach, “Confocal microscopy with a high numerical aperture parabolic mirror,” Opt. Express 9, 637–644 (2001), http://www.opticsexpress.org . [CrossRef] [PubMed]
  8. W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total irradiated power,” J. Opt. Soc. Am. 67, 1607–1615 (1977). [CrossRef]
  9. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [CrossRef]
  10. P. Varga, P. Török, “Focusing of electromagnetic waves by paraboloid mirrors. I. Theory,” J. Opt. Soc. Am. A 17, 2081–2089 (2000). [CrossRef]
  11. P. Varga, P. Török, “Focusing of electromagnetic waves by paraboloid mirrors. II. Numerical results,” J. Opt. Soc. Am. A 17, 2090–2095 (2000). [CrossRef]
  12. M. A. Lieb, A. J. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express 8, 458–474 (2000), http://www.opticsexpress.org . [CrossRef]
  13. H. Ling, S. W. Lee, “Focusing of electromagnetic waves through a dielectric interface,” J. Opt. Soc. Am. A 1, 965–973 (1984). [CrossRef]
  14. S. Hell, G. Reiner, C. Cremer, E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive-index,” J. Microsc. 169, 391–405 (1993). [CrossRef]
  15. P. Török, P. Varga, Z. Laczik, G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995). [CrossRef]
  16. P. Török, P. Varga, Z. Laczik, G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I.,” J. Opt. Soc. Am. A 12, 2136–2144 (1995). [CrossRef]
  17. P. Török, C. J. R. Sheppard, P. Varga, “Study of evanescent waves for transmission near-field optical microscopy,” J. Mod. Opt. 43, 1167–1183 (1996). [CrossRef]
  18. L. Novotny, Lecture Notes on Nano-optics (U. Rochester Press, Rochester, N.Y., 2000).
  19. M. A. Lieb, “Mikroskopie mit Parabolspiegeloptik. Theorie, Aufbau und Charakterisierung eines kombinierten konfokalen und nahfeld-optischen Mikroskops für die Einzelmolekül-Spektroskopie bei tiefen Temperaturen,” Ph.D dissertation (University of Siegen, Siegen, Germany, 2001), ISBN 3-8311-3424-3 (2002).
  20. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  21. W. Lukosz, R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 67, 195–199 (1977). [CrossRef]
  22. W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69, 1495–1503 (1979). [CrossRef]
  23. J. Enderlein, T. Ruckstuhl, S. Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt. 38, 724–732 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited