OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 3305–3312

Design Considerations for a Highly Segmented Mirror

Stephen Padin  »View Author Affiliations

Applied Optics, Vol. 42, Issue 16, pp. 3305-3312 (2003)

View Full Text Article

Acrobat PDF (151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Design issues for a 30-m highly segmented mirror are explored, with emphasis on parametric models of simple, inexpensive segments. A mirror with many small segments offers cost savings through quantity production and permits high-order active and adaptive wave-front corrections. For a 30-m <i>f</i>/1.5 paraboloidal mirror made of spherical, hexagonal glass segments, with simple warping harnesses and three-point supports, the maximum segment diameter is ~100 mm, and the minimum segment thickness is ~5 mm. Large-amplitude, low-order gravitational deformations in the mirror cell can be compensated if the segments are mounted on a plate floating on astatic supports. Because gravitational deformations in the plate are small, the segment actuators require a stroke of only a few tens of micrometers, and the segment positions can be measured by a wave-front sensor.

© 2003 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(220.4880) Optical design and fabrication : Optomechanics
(350.1260) Other areas of optics : Astronomical optics

Stephen Padin, "Design Considerations for a Highly Segmented Mirror," Appl. Opt. 42, 3305-3312 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. Angel, M. Lloyd-Hart, K. Hedge, R. Sarlot, and C. Peng, “The 20/20 telescope: MCAO imaging at the individual and combined foci,” in Proceedings of ESO Conference on Beyond Conventional Adaptive Optics, R. Ragazzoni and S. Esposito, eds. (to be published).
  2. A. D. Gleckler, D. J. Markason, and G. H. Ames, “PAMELA: control of a segmented mirror via wavefront tilt and segment piston sensing,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE 1543, 176–189 (1991).
  3. S. C. Fawcett, “Development of adaptive optical segments with integrated wave front sensing,” in Active and Adaptive Optical Components and Systems II, M. A. Ealey, ed., Proc. SPIE 1920, 193–199 (1993).
  4. J. M. Rakoczy, E. E. Montgomery, and J. L. Lindner, “Recent enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed at MSFC,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation and Commissioning, T. A. Sebring and T. Anderson, eds., Proc. SPIE 4004, 352–362 (2000).
  5. J. E. Nelson, T. S. Mast, and S. M. Faber, eds., “The design of the Keck Observatory and Telescope,” Keck Observatory Rep. 90 (Keck Observatory, Kamuela, Hawaii, 1985).
  6. V. L. Krabbendam, T. A. Sebring, F. B. Ray, and J. R. Fowler, “Development and performance of Hobby-Eberly Telescope 11-m segmented mirror,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE 3352, 436–445 (1998).
  7. L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, and M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE 3352, 34–42 (1998).
  8. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1435 (1965).
  9. G. Chanan, M. Troy, F. Dekens, S. Michaels, J. Nelson, T. Mast, and D. Kirkman, “Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm,” Appl. Opt. 37, 140–155 (1998).
  10. J. E. Nelson and T. S. Mast, eds., “Conceptual design for a thirty-meter telescope,” CELT Rep. 34 (University of California, Santa Cruz, Santa Cruz, Calif., 2002).
  11. P.-S. Kildal, L. A. Baker, and T. Hagfors, “The Arecibo upgrading: electrical design and expected performance of the dual-reflector feed system,” Proc. IEEE 82, 714–724 (1994).
  12. J. M. Sasian, “Four-mirror optical system for large telescopes,” Opt. Eng. 29, 1181–1185 (1990).
  13. D. Korsch, “Closed form solution for three-mirror telescopes, corrected for spherical aberration, coma, astigmatism, and field curvature,” Appl. Opt. 11, 2986–2987 (1972).
  14. R. N. Wilson and B. Delabre, “New optical solutions for very large telescopes using a spherical primary,” Astron. Astrophys. 294, 322–338 (1995).
  15. M. Lloyd-Hart, “Thermal performance enhancement of adaptive optics by use of a deformable secondary mirror,” Publ. Astron. Soc. Pac. 112, 264–272 (2000).
  16. R. N. Wilson, Reflecting Telescope Optics II (Springer-Verlag, Berlin, Germany, 1999), Chap. 3.
  17. M. Ealey, “Actuators: design fundamentals, key performance specifications, and parametric trades,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE 1543, 346–362 (1991).
  18. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1959), Chap. 3.
  19. T. S. Mast, J. E. Nelson, and G. E. Sommargren, “Primary mirror segment fabrication for CELT,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE 4003, 43–58 (2000).
  20. T. S. Mast and J. E. Nelson, “The fabrication of large optical surfaces using a combination of polishing and mirror bending,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE 1236, 670–681 (1990).
  21. J. E. Nelson, J. Lubliner, and T. S. Mast, “Telescope mirror supports: plate deflections on point supports,” in Advanced Technology Optical Telescopes, G. Burbidge and L. D. Barr, eds., Proc. SPIE 332, 212–228 (1982).
  22. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
  23. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, Vol. 19, E. Wolf, ed. (North-Holland, Amsterdam, 1981), pp. 281–376.
  24. J. B. Hindle, “Floatation systems,” in Amateur Telescope Making, A. G. Ingalls, ed., (Munn, 1947), pp. 229–234.
  25. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, Oxford, UK, 1998), Chap. 6.
  26. F. Roddier, ed., Adaptive Optics in Astronomy (Cambridge U. Press, Cambridge, UK, 1999), Chap. 3.
  27. J. N. Bachall and R. M. Soneira, “The distribution of stars to V = 16th magnitude near the north galactic pole: normalization, clustering properties, and counts in various bands,” Astrophys. J. 246, 122–135 (1981).
  28. G. Chanan, M. Troy, and E. Sirko, “Phase discontinuity sensing: a method for phasing segmented mirrors in the infrared,” Appl. Opt. 38, 704–713 (1999).
  29. N. Thomas and J. Wolfe, “UV-shifted durable silver coating for astronomical mirrors,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE 4003, 312–323 (2000).
  30. S. D. Browning, M. R. Jacobson, H. A. Macleod, R. H. Potoff, D. J. Song, and F. Van Milligen, “Development of high reflectance coatings for ground-based astronomical instruments,” in Advanced Technology Optical Telescopes, G. Burbidge and L. D. Barr, eds., Proc. SPIE 332, 310–314 (1982).
  31. D. Y. Song and H. A. Macleod, “Multilayer coatings for astronomical telescope mirrors,” in Southwest Conference on Optics, S. C. Stotlar, ed., Proc. SPIE 540, 156–159 (1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited