OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 3305–3312

Design considerations for a highly segmented mirror

Stephen Padin  »View Author Affiliations

Applied Optics, Vol. 42, Issue 16, pp. 3305-3312 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Design issues for a 30-m highly segmented mirror are explored, with emphasis on parametric models of simple, inexpensive segments. A mirror with many small segments offers cost savings through quantity production and permits high-order active and adaptive wave-front corrections. For a 30-m f/1.5 paraboloidal mirror made of spherical, hexagonal glass segments, with simple warping harnesses and three-point supports, the maximum segment diameter is ∼100 mm, and the minimum segment thickness is ∼5 mm. Large-amplitude, low-order gravitational deformations in the mirror cell can be compensated if the segments are mounted on a plate floating on astatic supports. Because gravitational deformations in the plate are small, the segment actuators require a stroke of only a few tens of micrometers, and the segment positions can be measured by a wave-front sensor.

© 2003 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(220.4880) Optical design and fabrication : Optomechanics
(350.1260) Other areas of optics : Astronomical optics

Original Manuscript: July 26, 2002
Revised Manuscript: December 16, 2002
Published: June 1, 2003

Stephen Padin, "Design considerations for a highly segmented mirror," Appl. Opt. 42, 3305-3312 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Angel, M. Lloyd-Hart, K. Hedge, R. Sarlot, C. Peng, “The 20/20 telescope: MCAO imaging at the individual and combined foci,” in Proceedings of ESO Conference on Beyond Conventional Adaptive Optics, R. Ragazzoni, S. Esposito, eds. (to be published).
  2. A. D. Gleckler, D. J. Markason, G. H. Ames, “PAMELA: control of a segmented mirror via wavefront tilt and segment piston sensing,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 176–189 (1991). [CrossRef]
  3. S. C. Fawcett, “Development of adaptive optical segments with integrated wave front sensing,” in Active and Adaptive Optical Components and Systems II, M. A. Ealey, ed., Proc. SPIE1920, 193–199 (1993). [CrossRef]
  4. J. M. Rakoczy, E. E. Montgomery, J. L. Lindner, “Recent enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed at MSFC,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation and Commissioning, T. A. Sebring, T. Anderson, eds., Proc. SPIE4004, 352–362 (2000). [CrossRef]
  5. J. E. Nelson, T. S. Mast, S. M. Faber, eds., “The design of the Keck Observatory and Telescope,” Keck Observatory Rep. 90 (Keck Observatory, Kamuela, Hawaii, 1985).
  6. V. L. Krabbendam, T. A. Sebring, F. B. Ray, J. R. Fowler, “Development and performance of Hobby-Eberly Telescope 11-m segmented mirror,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 436–445 (1998). [CrossRef]
  7. L. W. Ramsey, M. T. Adams, T. G. Barnes, J. A. Booth, M. E. Cornell, J. R. Fowler, N. Gaffney, J. W. Glaspey, J. Good, G. J. Hill, P. W. Kelton, V. L. Krabbendam, L. Long, P. J. MacQueen, F. B. Ray, R. L. Ricklefs, J. Sage, T. A. Sebring, W. J. Spiesman, M. Steiner, “The early performance and present status of the Hobby-Eberly Telescope,” in Advanced Technology Optical/IR Telescopes VI, L. M. Stepp, ed., Proc. SPIE3352, 34–42 (1998). [CrossRef]
  8. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1435 (1965). [CrossRef]
  9. G. Chanan, M. Troy, F. Dekens, S. Michaels, J. Nelson, T. Mast, D. Kirkman, “Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm,” Appl. Opt. 37, 140–155 (1998). [CrossRef]
  10. J. E. Nelson, T. S. Mast, eds., “Conceptual design for a thirty-meter telescope,” CELT Rep. 34 (University of California, Santa Cruz, Santa Cruz, Calif., 2002).
  11. P.-S. Kildal, L. A. Baker, T. Hagfors, “The Arecibo upgrading: electrical design and expected performance of the dual-reflector feed system,” Proc. IEEE 82, 714–724 (1994). [CrossRef]
  12. J. M. Sasian, “Four-mirror optical system for large telescopes,” Opt. Eng. 29, 1181–1185 (1990). [CrossRef]
  13. D. Korsch, “Closed form solution for three-mirror telescopes, corrected for spherical aberration, coma, astigmatism, and field curvature,” Appl. Opt. 11, 2986–2987 (1972). [CrossRef] [PubMed]
  14. R. N. Wilson, B. Delabre, “New optical solutions for very large telescopes using a spherical primary,” Astron. Astrophys. 294, 322–338 (1995).
  15. M. Lloyd-Hart, “Thermal performance enhancement of adaptive optics by use of a deformable secondary mirror,” Publ. Astron. Soc. Pac. 112, 264–272 (2000). [CrossRef]
  16. R. N. Wilson, Reflecting Telescope Optics II (Springer-Verlag, Berlin, Germany, 1999), Chap. 3. [CrossRef]
  17. M. Ealey, “Actuators: design fundamentals, key performance specifications, and parametric trades,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 346–362 (1991). [CrossRef]
  18. S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1959), Chap. 3.
  19. T. S. Mast, J. E. Nelson, G. E. Sommargren, “Primary mirror segment fabrication for CELT,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 43–58 (2000). [CrossRef]
  20. T. S. Mast, J. E. Nelson, “The fabrication of large optical surfaces using a combination of polishing and mirror bending,” in Advanced Technology Optical Telescopes IV, L. D. Barr, ed., Proc. SPIE1236, 670–681 (1990). [CrossRef]
  21. J. E. Nelson, J. Lubliner, T. S. Mast, “Telescope mirror supports: plate deflections on point supports,” in Advanced Technology Optical Telescopes, G. Burbidge, L. D. Barr, eds., Proc. SPIE332, 212–228 (1982). [CrossRef]
  22. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  23. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, Vol. 19, E. Wolf, ed. (North-Holland, Amsterdam, 1981), pp. 281–376. [CrossRef]
  24. J. B. Hindle, “Floatation systems,” in Amateur Telescope Making, A. G. Ingalls, ed., (Munn, 1947), pp. 229–234.
  25. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, Oxford, UK, 1998), Chap. 6.
  26. F. Roddier, ed., Adaptive Optics in Astronomy (Cambridge U. Press, Cambridge, UK, 1999), Chap. 3. [CrossRef]
  27. J. N. Bachall, R. M. Soneira, “The distribution of stars to V = 16th magnitude near the north galactic pole: normalization, clustering properties, and counts in various bands,” Astrophys. J. 246, 122–135 (1981). [CrossRef]
  28. G. Chanan, M. Troy, E. Sirko, “Phase discontinuity sensing: a method for phasing segmented mirrors in the infrared,” Appl. Opt. 38, 704–713 (1999). [CrossRef]
  29. N. Thomas, J. Wolfe, “UV-shifted durable silver coating for astronomical mirrors,” in Optical Design, Materials, Fabrication and Maintenance, P. Dierickx, ed., Proc. SPIE4003, 312–323 (2000). [CrossRef]
  30. S. D. Browning, M. R. Jacobson, H. A. Macleod, R. H. Potoff, D. J. Song, F. Van Milligen, “Development of high reflectance coatings for ground-based astronomical instruments,” in Advanced Technology Optical Telescopes, G. Burbidge, L. D. Barr, eds., Proc. SPIE332, 310–314 (1982). [CrossRef]
  31. D. Y. Song, H. A. Macleod, “Multilayer coatings for astronomical telescope mirrors,” in Southwest Conference on Optics, S. C. Stotlar, ed., Proc. SPIE540, 156–159 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited