OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 17 — Jun. 10, 2003
  • pp: 3356–3360

Harmonic-based gain compensation method in optic sensors with separate light paths

César Daniel Perciante, José A. Ferrari, and Eugenio Garbusi  »View Author Affiliations


Applied Optics, Vol. 42, Issue 17, pp. 3356-3360 (2003)
http://dx.doi.org/10.1364/AO.42.003356


View Full Text Article

Enhanced HTML    Acrobat PDF (90 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a method for the compensation of gain unbalance in optical sensors with separate light paths that involve two separate detection and conditioning electronic devices. The method is based on the digital measurement of harmonics of the output intensities from each path by means of the fast Fourier transform algorithm. The quotient of the amplitude of harmonics allows us to calculate the unbalance between paths and to compensate for it. In particular, this method can be applied in electric power and current sensors that use Faraday and Pockels cells to measure current and voltage, respectively.

© 2003 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors

History
Original Manuscript: August 29, 2002
Revised Manuscript: January 29, 2003
Published: June 10, 2003

Citation
César Daniel Perciante, José A. Ferrari, and Eugenio Garbusi, "Harmonic-based gain compensation method in optic sensors with separate light paths," Appl. Opt. 42, 3356-3360 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-17-3356


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Niewczas, A. Cruden, W. C. Michie, W. I. Madden, J. R. McDonald, I. Andronovic, “Vibration compensation technique for an optical current transducer,” Opt. Eng. 38, 1708–1714 (1999). [CrossRef]
  2. N. C. Pistoni, M. Martinelli, “Vibration-insensitive fiber-optic current sensor,” Opt. Lett. 18, 314–316 (1993). [CrossRef] [PubMed]
  3. X. Fang, A. Wang, R. G. May, R. O. Claus, “A reciprocal-compensated fiber-optic electric current sensor,” J. Lightwave Techn. 12, 1882–1889 (1994). [CrossRef]
  4. P. Menke, T. Bosselmann, “Temperature compensation in magnetooptic AC current sensors using an intelligent AC-DC signal evaluation,” J. Lightwave Techn. 13, 1362–1370 (1995). [CrossRef]
  5. A. Papp, H. Harms, “Magnetooptical current transformer. I: Principles,” Appl. Opt. 19, 3729–3734 (1980). [CrossRef] [PubMed]
  6. A. M. Smith, “Optical fibres for current measurement applications,” Opt. and Laser Techn. , 12, 25–29 (1980). [CrossRef]
  7. A. J. Rogers, “Optical fiber current measurement,” in Optical Fiber Sensor Technology, K. T. V. Grattan, B. T. Meggitt, eds. (Chapman Hall, London, 1995), Chap. 13B. [CrossRef]
  8. B. C. B. Chu, Y. N. Ning, D. A. Jackson, “Faraday current sensor that uses a triangular-shaped bulk-optic sensing element,” Opt. Lett. 17, 1167–1169 (1992). [CrossRef] [PubMed]
  9. T. Fujimoto, M. Shimizu, H. Nakagawa, I. Sone, K. Kawashima, E. Mori, “Development of an optical current transformer for adjustable speed pumped storage systems,” IEEE Trans. Power Deliv. 12, 45–50 (1997). [CrossRef]
  10. M. Takahashy, H. Noda, K. Terai, S. Ikuta, Y. Mizutani, “Optical current transformer for gas insulated switchgear using silica optical fiber,” IEEE Trans. Power Deliv. 12, 1422–1427 (1997). [CrossRef]
  11. T. Ko, C. L. Tzeng, J. H. Wang, “Birefringence examination in a practical fiber-current-sensing system,” Appl. Opt. 33, 7693–7697 (1994). [CrossRef] [PubMed]
  12. Y. Li, C. Li, T. Yoshino, “Optical electric-power-sensing system using Faraday and Pockels cells,” Appl. Opt. 40, 5738–5741 (2001). [CrossRef]
  13. C. Li, X. Cui, T. Yoshino, “Measurement of AC electric power based on dual transverse Pockels effect,” IEEE Trans. Instrum. Meas. 50, 1375–1380 (2001). [CrossRef]
  14. A. E. Petersen, “Portable optical AC- and proposed DC-current sensor for high voltage applications,” IEEE Trans. Power Deliv. 10, 595–599 (1995). [CrossRef]
  15. M. Higaki, K. Fujii, S. Yamaguchi, “Optical dc current and voltage measurement by superposing ac magnetic or electric field,” in Optical Engineering for Sensing and Nanotechnology (ICOSN ’99), I. Yamaguchi, ed., SPIE Proc.3740, 509–512 (1999). [CrossRef]
  16. J. A. Ferrari, C. D. Perciante, A. Dubra, A. Arnaud, E. M. Frins, “AC current sensor with second-harmonic detection,” Appl. Opt. 39, 4638–4640 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited