OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 17 — Jun. 10, 2003
  • pp: 3390–3397

Line-edge roughness transfer function and its application to determining mask effects in EUV resist characterization

Patrick P. Naulleau and Gregg M. Gallatin  »View Author Affiliations


Applied Optics, Vol. 42, Issue 17, pp. 3390-3397 (2003)
http://dx.doi.org/10.1364/AO.42.003390


View Full Text Article

Enhanced HTML    Acrobat PDF (219 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The control of line-edge roughness (LER) of features printed in photoresist poses significant challenges to next-generation lithography techniques such as extreme-ultraviolet (EUV) lithography. Achieving adequately low LER levels will require accurate resist characterization as well as the ability to separate resist effects from other potential contributors to LER. One significant potential contributor is LER on the mask. Here we explicitly study the mask to resist LER coupling using both analytical and computer-simulation methods. We present what is to our knowledge a new imaging transfer function referred to as the LER transfer function (LTF), which fundamentally differs from both the conventional modulation transfer function and the optical transfer function. Moreover, we present experimental results demonstrating the impact of current EUV masks on projection-lithography-based LER experiments.

© 2003 Optical Society of America

OCIS Codes
(110.3960) Imaging systems : Microlithography
(110.4100) Imaging systems : Modulation transfer function
(110.4850) Imaging systems : Optical transfer functions
(110.4980) Imaging systems : Partial coherence in imaging

History
Original Manuscript: January 27, 2003
Revised Manuscript: March 4, 2003
Published: June 10, 2003

Citation
Patrick P. Naulleau and Gregg M. Gallatin, "Line-edge roughness transfer function and its application to determining mask effects in EUV resist characterization," Appl. Opt. 42, 3390-3397 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-17-3390


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Stulen, D. Sweeney, “Extreme ultraviolet lithography,” IEEE J. Quantum Electron. 35, 694–699 (1999). [CrossRef]
  2. H. Meiling, J. Benschop, R. Hartman, P. Kürz, P. Høghøj, R. Geyl, N. Harned, “EXSTATIC: ASML’s α-tool development for EUVL,” Proc. SPIE 4688, 1–10 (2002).
  3. K. Hamamoto, T. Watanabe, H. Hada, H. Komano, S. Kishimura, S. Okazaki, H. Kinoshita, “Fine pattern replication on 10 × 10-mm exposure area using the ETS-1 laboratory tool in HIT,” Proc. SPIE 4688, 664–671 (2002). [CrossRef]
  4. International Technology Roadmap for Semiconductors, 2001 Edition, ( http://public.itrs.net/ ).
  5. R. Brainard, C. Henderson, J. Cobb, V. Rao, J. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, S. Connolly, “Comparison of the lithographic properties of positive resists upon exposure to deep- and extreme-ultraviolet radiation,” J. Vac. Sci. Technol. B 17, 3384–3389 (1999). [CrossRef]
  6. M. Shumway, S. Lee, C. Cho, P. Naulleau, K. Goldberg, J. Bokor, “Extremely fine-pitch printing with a 10× Schwarzschild optic at extreme ultraviolet wavelengths,” Proc. SPIE 4343, 357–362 (2001). [CrossRef]
  7. W. Li, H. Solak, F. Cerrina, “EUV nanolithography: sub-50 nm L/S,” Proc. SPIE 3997, 794–798 (2000). [CrossRef]
  8. T. Watanabe, H. Kinoshita, A. Miyafuji, S. Irie, S. Shirayone, S. Mori, E. Yano, H. Hada, K. Ohmori, H. Komano, “Lithographic performance and optimization of chemically amplified single-layer resists for EUV lithography,” Proc. SPIE 3997, 600–607 (2000). [CrossRef]
  9. J. Goldsmith, K. Berger, D. Bozman, G. Cardinale, D. Folk, C. Henderson, D. O’Connell, A. Ray-Chaudhuri, K. Stewart, D. Tichenor, H. Chapman, R. Gaughan, R. Hudyma, C. Montcalm, E. Spiller, J. Taylor, J. Williams, K. Goldberg, E. Gullikson, P. Naulleau, J. Cobb, “Sub-100-nm lithographic imaging with the EUV 10× Microstepper,” Proc. SPIE 3676, 264–271 (1999). [CrossRef]
  10. P. Naulleau, K. Goldberg, E. Anderson, D. Attwood, P. Batson, J. Bokor, P. Denham, E. Gullikson, B. Harteneck, B. Hoef, K. Jackson, D. Olynick, S. Rekawa, F. Salmassi, K. Blaedel, H. Chapman, L. Hale, P. Mirkarimi, R. Soufli, E. Spiller, D. Sweeney, J. Taylor, C. Walton, D. O’Connell, R. Stulen, D. Tichenor, C. Gwyn, P. Yan, G. Zhang, “Sub-70-nm EUV Lithography at the Advanced Light Source Static Microfield Exposure Station Using the ETS Set-2 Optic,” J. Vac. Sci. Technol. B, 20, 2829–2833 (2002). [CrossRef]
  11. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996) Chap. 6, pp. 126–165.
  12. D. Tichenor, A. Ray-Chaudhuri, S. Lee, H. Chapman, W. Replogle, K. Berger, R. Stulen, G. Kubiak, L. Klebanoff, J. Wronosky, D. O’Connell, A. Leung, K. Jefferson, W. Ballard, L. Hale, K. Blaedel, J. Taylor, J. Folta, E. Spiller, R. Soufli, G. Sommargren, D. Sweeney, P. Naulleau, K. Goldberg, E. Gullikson, J. Bokor, D. Attwood, U. Mickan, R. Hanzen, E. Panning, P. Yan, J. Bjorkholm, C. Gwyn, “Initial results from the EUV engineering test stand,” Proc. SPIE 4506, 639–645 (2001).
  13. D. W. Sweeney, R. Hudyma, H. N. Chapman, D. Shafer, “EUV optical design for a 100 nm CD imaging system,” Proc. SPIE 3331, 2–10 (1998). [CrossRef]
  14. K. Goldberg, P. Naulleau, J. Bokor, H. Chapman, “Testing EUV optics with visible-light and EUV interferometry,” to be published, J. Vac. Sci. Technol. B, 20, 2834–2839 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited