OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 17 — Jun. 10, 2003
  • pp: 3418–3427

Comparison of transmission and the 90-degree holographic recording geometry

Yunping Yang, Ali Adibi, and Demetri Psaltis  »View Author Affiliations

Applied Optics, Vol. 42, Issue 17, pp. 3418-3427 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We compare the system performances of two holographic recording geometries using iron-doped lithium niobate: the 90-degree and transmission geometry. We find that transmission geometry is better because the attainable dynamic range (M/#) is much higher. The only drawback of transmission geometry is the buildup of fanning, particularly during readout. Material solutions that reduce fanning such as doubly-doped photorefractive crystals make transmission geometry the clear winner.

© 2003 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(160.2900) Materials : Optical storage materials
(210.0210) Optical data storage : Optical data storage
(210.2860) Optical data storage : Holographic and volume memories

Original Manuscript: September 26, 2002
Revised Manuscript: February 26, 2003
Published: June 10, 2003

Yunping Yang, Ali Adibi, and Demetri Psaltis, "Comparison of transmission and the 90-degree holographic recording geometry," Appl. Opt. 42, 3418-3427 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Mok, M. Tackitt, H. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 8, 605–607 (1991). [CrossRef]
  2. G. Rakujic, V. Levya, A. Yariv, “Optical data storage by using wavelength multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992). [CrossRef]
  3. F. Mok, “Angle-multiplexed storage of 5,000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993). [CrossRef]
  4. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994). [CrossRef] [PubMed]
  5. D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995). [CrossRef]
  6. J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek, “Volume holographic memory system: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995). [CrossRef]
  7. G. Burr, F. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90-degree geometry,” Opt. Commun. 117, 49–55 (1995). [CrossRef]
  8. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996). [CrossRef] [PubMed]
  9. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Günther, R. M. Macfarlane, G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Opt. Lett. 22, 1509–1511 (1997). [CrossRef]
  10. X. An, D. Psaltis, G. Burr, “Thermal fixing of 10,000 holograms in LiNbO3Fe,” Appl. Opt. 38, 386–393 (1999). [CrossRef]
  11. G. Burr, “Volume holographic storage using the 90° geometry,” Ph.D dissertation, California Institute of Technology, Pasadena, Calif. (1996).
  12. K. Peithmann, A. Wiebrock, K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999). [CrossRef]
  13. I. Nee, M. Müller, K. Buse, E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000). [CrossRef]
  14. Y. Yang, I. Nee, K. Buse, D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001). [CrossRef]
  15. Y. Yang, K. Buse, D. Psaltis, “Photorefractive recording in LiNbO3:Mn,” Opt. Lett. 27, 158–160 (2002). [CrossRef]
  16. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988). [CrossRef]
  17. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vintekii, “Holographic storage in electrooptic crystals, 1. steady-state,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  18. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  19. K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998). [CrossRef]
  20. A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001). [CrossRef]
  21. X. Yi, P. Yeh, C. Gu, “Statistical-analysis of cross-talk noise and storage capacity in volume holographic memory,” Opt. Lett. 19, 1580–1582 (1994). [CrossRef] [PubMed]
  22. M. P. Bernal, G. W. Burr, H. Coufal, M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377–5385 (1998). [CrossRef]
  23. J.-J. P. Drolet, E. Chuang, G. Barbastathis, D. Psaltis, “Compact, integrated dynamic holographic memory with refreshed holograms,” Opt. Lett. 22, 552–554 (1997). [CrossRef] [PubMed]
  24. D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974). [CrossRef]
  25. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998). [CrossRef]
  26. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998). [CrossRef] [PubMed]
  27. W. Liu, D. Psaltis, “Pixel size limit in holographic memories,” Opt. Lett. 24, 1340–1342 (1999). [CrossRef]
  28. G. W. Burr, I. Leyva, “Multiplexed phase-conjugate holographic data storage with a buffer hologram,” Opt. Lett. 25, 499–501 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited