OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 18 — Jun. 20, 2003
  • pp: 3460–3471

Efficient use of an improved radiative transfer code to simulate near-global distributions of satellite-measured radiances

Takashi Y. Nakajima, Hiroshi Murakami, Masahiro Hori, Teruyuki Nakajima, Teruo Aoki, Tomohiko Oishi, and Akihiko Tanaka  »View Author Affiliations


Applied Optics, Vol. 42, Issue 18, pp. 3460-3471 (2003)
http://dx.doi.org/10.1364/AO.42.003460


View Full Text Article

Enhanced HTML    Acrobat PDF (1725 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two new extension modules that give the water-leaving radiance from the ocean and the snow bidirectional reflectance distribution function were implemented in the latest radiative transfer code. In addition, to simulate the near-global distributions of satellite-measured radiances by using the improved radiative transfer code, we tested and applied the look-up table method together with the process-separation technique of the radiative transfer calculation. The computing time was reduced from 1 year to 20 s to simulate one channel, one scene of the Global Imager image by use of an Alpha 21164A-2 (600-MHz) machine. The error analyses showed that the radiances were simulated with less than 1% error for the nonabsorbing visible channels and ∼2% error for absorbing channels by use of this method.

© 2003 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors

History
Original Manuscript: July 18, 2002
Revised Manuscript: March 20, 2003
Published: June 20, 2003

Citation
Takashi Y. Nakajima, Hiroshi Murakami, Masahiro Hori, Teruyuki Nakajima, Teruo Aoki, Tomohiko Oishi, and Akihiko Tanaka, "Efficient use of an improved radiative transfer code to simulate near-global distributions of satellite-measured radiances," Appl. Opt. 42, 3460-3471 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3460


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. B. Rossow, “Measuring cloud properties from space: a review,” J. Clim. 2, 201–213 (1989). [CrossRef]
  2. Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Clim. 7, 465–497 (1994). [CrossRef]
  3. A. Higurashi, T. Nakajima, “Development of a two channel aerosol retrieval algorithm on global scale using NOAA/AVHRR,” J. Atmos. Sci. 56, 924–941 (1999). [CrossRef]
  4. T. Y. Nakajima, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, M. Kishino, “Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations,” Appl. Opt. 37, 3149–3163 (1998). [CrossRef]
  5. T. Nakajima, M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986). [CrossRef]
  6. T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988). [CrossRef]
  7. T. Nakajima, M. Tanaka, “Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system,” J. Quant. Spectroc. Radiat. Transfer 29, 521–537 (1983). [CrossRef]
  8. Y. Kaufman, T. Nakajima, “Effect of Amazon smoke on cloud microphysics and albedo—analysis from satellite imagery,” J. Appl. Meteorol. 32, 729–774 (1993). [CrossRef]
  9. T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995). [CrossRef]
  10. K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  11. F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  12. A. Tanaka, T. Oishi, M. Kishino, D. Roland, “Application of the neural network to OCTS data,” presented at the Fourteenth Ocean Optics Conference, Kailua Kona, Hawaii, 10–13 November 1998.
  13. R. Doerffer, “Imaging spectroscopy for detection of chlorophyll and suspended matter,” Imaging Spectroscopy and Prospective Applications, F. Toselli, J. Bodechtel, eds. (ECSC-EEC-EAEC, Brussels-Luxembourg, 1992) pp. 215–257.
  14. J. Joseph, “Untersuchungen über ober- und unterlichtmessungen im meere und über ihren zusammenhang mit durchsichtigkeitsmessungen,” Dtsh. Hydrogr. Z. 3, 324–335 (1950). [CrossRef]
  15. T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000). [CrossRef]
  16. J. E. Hansen, “Multiple scattering of polarized light in planetary atmospheres. Part II. Sunlight reflected by terrestrial water clouds,” J. Atmos. Sci. 28, 1400–1426 (1971). [CrossRef]
  17. T. Aoki, T. Aoki, M. Fukabori, A. Uchiyama, “Numerical simulation of atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system,” J. Meteorol. Soc. Jpn. 77, 595–614 (1999).
  18. P. A. Agbu, M. E. James, The NOAA/NASA Pathfinder AVHRR Land Data Set User’s Manual (Goddard Distributed Active Center, NASA, Goddard Space Flight Center, Greenbelt, Md., 1994).
  19. S. W. Running, T. R. Loveland, L. L. Pierce, “A vegetation classification logic based on remote sensing for use in global biogeochemical models,” Ambio 23, 77–81 (1994).
  20. T. Takemura, H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, T. Nakajima, “Global three-dimensional simulation of aerosol optical thickness distribution of various origins,” J. Geophys. Res. 105, 17853–17873 (2000). [CrossRef]
  21. A. Numaguti, “Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: significance of the distribution of evaporation,” J. Atmos. Sci. 50, 1874–1887 (1993). [CrossRef]
  22. A. Nolin, R. L. Armstrong, J. Maslanik, “Near real-time SSM/I EASE-grid daily global ice concentration and snow extent,” National Snow and Ice Data Center, Boulder, Colo., data on 11 January 2000, digital media.
  23. W. J. Wiscombe, S. G. Warren, “A model for the spectral albedo of snow. I: Pure snow,” J. Atmos. Sci. 37, 2712–2733 (1980). [CrossRef]
  24. T. Aoki, T. Aoki, M. Fukabori, Y. Tachibana, Y. Zaizen, F. Nishio, T. Oishi, “Spectral albedo observation on the snow field at Barrow, Alaska,” Polar Meteorol. Glaciol. 12, 1–9 (1998).
  25. K. Kawamoto, T. Nakajima, T. Y. Nakajima, “A global determination of cloud microphysics with AVHRR remote sensing,” J. Clim. 14, 2054–2068 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited