OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 18 — Jun. 20, 2003
  • pp: 3488–3494

Analysis of antiresonant reflecting optical waveguide gratings by use of the Method of Lines

Husain A. Jamid and Muhammad N. Akram  »View Author Affiliations


Applied Optics, Vol. 42, Issue 18, pp. 3488-3494 (2003)
http://dx.doi.org/10.1364/AO.42.003488


View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The modal spectral response of an antiresonant reflecting optical waveguide (ARROW) with periodic corrugations or grating is calculated for both shallow and deep gratings with the Method of Lines. The effect of the ARROW layer thickness and the grating depth on the spectral response is studied. It is found that when the ARROW-layer thickness is close to resonance, the ripples in the reflection spectra become smooth and the peak reflectivity drops. This is attributed to the large increase in the leakage loss of the ARROW waveguide near resonance. The ARROW grating is characterized by modal reflectivity spectra, which exhibit a strong polarization discrimination property, in favor of the TE polarization.

© 2003 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.1480) Optical devices : Bragg reflectors

History
Original Manuscript: October 7, 2002
Revised Manuscript: February 19, 2003
Published: June 20, 2003

Citation
Husain A. Jamid and Muhammad N. Akram, "Analysis of antiresonant reflecting optical waveguide gratings by use of the Method of Lines," Appl. Opt. 42, 3488-3494 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3488


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Huang, R. M. Shubair, A. Nathan, Y. L. Chow, “The modal characteristics of ARROW structures,” IEEE J. Lightwave Technol. 10, 1015–1022 (1992). [CrossRef]
  2. J. Kubica, “Modal propagation within ARROW waveguides,” Opt. Commun. 78, 133–136 (1990). [CrossRef]
  3. M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986). [CrossRef]
  4. J. L. Archambault, R. J. Black, S. Lacroix, J. Bures, “Loss calculations for anti-resonant waveguides,” IEEE J. Lightwave Technol. 11, 416–423 (1993). [CrossRef]
  5. H. N. Yang, M. Al-Muhanna, A. Mawst, L. Botez, D. Vang, T. Alvarez, R. F. D. Johnson, “High-power single-mode simplified antiresonant reflecting optical waveguide (s-arrow) distributed feedback semiconductor lasers,” IEEE Photon. Technol. Lett. 10, 1079–1081 (1998). [CrossRef]
  6. Z. M. Mao, W. P. Huang, “An ARROW optical wavelength filter: design and analysis,” IEEE J. Lightwave Technol. 11, 1183–1188 (1993). [CrossRef]
  7. J. Gehler, A. Brauer, W. Karthe, U. Trurschel, M. A. Duguay, “ARROW based optical wavelength filter in silica,” Electron. Lett. 31, 547–548 (1995). [CrossRef]
  8. V. Delisle, U. Trutschel, H. Tremblay, M. A. Duguay, F. Lederer, “High finesse wavelength selective coupler based on ARROW,” IEEE Photon. Technol. Lett. 8, 791–793 (1996). [CrossRef]
  9. M. Mann, U. Trutschel, C. Wachter, L. Leine, F. Lederer, “Directional coupler based on an antiresonant reflecting optical waveguide,” Opt. Lett. 16, 805–807 (1991). [CrossRef] [PubMed]
  10. J. Gerdes, R. Pregla, “Beam-propagation algorithm based on the method of lines,” J. Opt. Soc. Am. B 8, 389–394 (1991). [CrossRef]
  11. U. Rogge, R. Pregla, “Method of lines for the analysis of strip-loaded optical waveguides,” J. Opt. Soc. Am. B 8, 459–463 (1991). [CrossRef]
  12. S. F. Helfert, R. Pregla, “Efficient analysis of periodic structures,” IEEE J. Lightwave Technol. 16, 1694–1702 (1998). [CrossRef]
  13. V. Vemuri, W. J. Karplus, Digital Computer Treatment of Partial Differential Equations, Prentice-Hall Series in Computational Mathematics (Prentice Hall, Englewood Cliffs, New Jersey, 1981).
  14. T. Itoh, ed., Numerical Techniques for Microwave and Millimeter-Wave Passive Structures (Wiley, New York, 1989).
  15. E. Ahlers, R. Pregla, “3-D modeling of concatenations of straight and curved waveguides by MoL-BPM,” Opt. Quantum Electron. 29, 151–156 (1997). [CrossRef]
  16. U. Rogge, “Method of lines for the analysis of dielectric waveguides.” Ph.D. thesis (Fern University, Hagen, Germany, 1991).
  17. H. A. Al-Jamid, M. N. Akram, “A new higher-order finite-difference approximation scheme for the method of lines,” IEEE J. Lightwave Technol. 19, 398–404 (2001). [CrossRef]
  18. H. A. Jamid, M. N. Akram, “Analysis of deep waveguide gratings: an efficient cascading and doubling algorithm in the method of lines framework,” IEEE J. Lightwave Technol. 20, 1204–1209 (2002). [CrossRef]
  19. H. A. Jamid, “Frequency-domain PML layer based on the complex mapping of space: boundary condition treatment,” IEEE Microwave Guid. Wave Lett. 10, 356–358 (2000). [CrossRef]
  20. J. M. Kubica, “A rigorous design method for antiresonant reflecting optical waveguides,” IEEE Photon. Technol. Lett. 6, 1460–1462 (1994). [CrossRef]
  21. M. N. Akram, Master’s thesis (King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited