OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 18 — Jun. 20, 2003
  • pp: 3550–3554

Generation of radially polarized beams with an image-rotating resonator

Darrell J. Armstrong, Mark C. Phillips, and Arlee V. Smith  »View Author Affiliations

Applied Optics, Vol. 42, Issue 18, pp. 3550-3554 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (315 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show how a passive image-rotating optical resonator can be used to convert a linearly polarized, lowest-order Gaussian beam into a radially polarized beam. The image and polarization rotation of the cavity removes the frequency degeneracy of the modes, making it possible to select the radially polarized mode by cavity tuning. With the addition of gain, the same cavity should operate as a radially polarized laser when injection seeded at the proper wavelength.

© 2003 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.4780) Lasers and laser optics : Optical resonators
(230.5750) Optical devices : Resonators

Original Manuscript: January 16, 2003
Revised Manuscript: March 19, 2003
Published: June 20, 2003

Darrell J. Armstrong, Mark C. Phillips, and Arlee V. Smith, "Generation of radially polarized beams with an image-rotating resonator," Appl. Opt. 42, 3550-3554 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. T. Gahagan, G. A. Swartzlander, “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16, 533–537 (1999). [CrossRef]
  2. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997). [CrossRef]
  3. E. Abramochkin, N. Losevsky, V. Volostnikov, “Generation of spiral-type laser beams,” Opt. Commun. 141, 59–64 (1997). [CrossRef]
  4. R. Oron, N. Davidson, A. A. Friesem, E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000). [CrossRef]
  5. V. G. Niziev, A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999). [CrossRef]
  6. S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000). [CrossRef]
  7. L. Novotny, M. R. Beversluis, K. S. Youngworth, T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001). [CrossRef] [PubMed]
  8. L. P. Campbell, C. E. Dilley, S. C. Gottschalk, W. D. Kimura, D. C. Quimby, L. C. Steinhauer, M. Babzien, I. Ben-Zvi, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky, J. R. Skaritka, A. van Steenbergen, V. E. Yakimenko, D. B. Cline, P. He, Y. Liu, R. H. Pantell, “Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration,” IEEE Trans. Plasma Sci. 28, 1094–1102 (2000). [CrossRef]
  9. C. Varin, M. Piche, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002). [CrossRef]
  10. A. A. Tovar, “Production and propagation of cylindrically polarized Laguerre-Gaussian laser beams,” J. Opt. Soc. Am. A 15, 2705–2711 (1998). [CrossRef]
  11. M. E. Maric, E. Garmire, “Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides,” Appl. Phys. Lett. 38, 743–745 (1981). [CrossRef]
  12. K. S. Youngworth, T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Exp. 7, 77–87 (2000), http://www.opticsexpress.org . [CrossRef]
  13. S. C. Tidwell, G. H. Kim, W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32, 5222–5229 (1993). [CrossRef] [PubMed]
  14. S. C. Tidwell, D. H. Ford, W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990). [CrossRef] [PubMed]
  15. T. Grosjean, D. Courjon, M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203, 1–5 (2002). [CrossRef]
  16. Z. Bomzon, V. Kleiner, E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001). [CrossRef]
  17. Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002). [CrossRef]
  18. Y. Mushiake, K. Matsumura, N. Nakajima, “Generation of radially polarized optical beam mode by laser oscillation,” Proc. IEEE 60, 1107–1109 (1972). [CrossRef]
  19. J. J. Wynne, “Generation of the rotationally symmetric TE01 and TM01 modes from a wavelength-tunable laser,” IEEE J. Quantum Electron. QE-10, 125–127 (1974). [CrossRef]
  20. D. Pohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972). [CrossRef]
  21. A. A. Tovar, G. H. Clark, “Concentric-circle-grating, surface-emitting laser beam propagation in complex optical systems,” J. Opt. Soc. Am. A 14, 3333–3340 (1997). [CrossRef]
  22. R. H. Jordan, D. G. Hall, O. King, G. Wicks, S. Rishton, “Lasing behavior of circular grating surface-emitting semiconductor lasers,” J. Opt. Soc. Am. B 14, 449–453 (1997). [CrossRef]
  23. A. V. Smith, D. J. Armstrong, “Nanosecond optical parametric oscillator with 90° image rotation: design and performance,” J. Opt. Soc. Am. B. 19, 1801–1814 (2002). [CrossRef]
  24. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingham, S. Stankovic, T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27, 1351–1353 (2002). [CrossRef]
  25. S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B: Quantum Semiclassical Opt. 4, S1–S10 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited