OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 18 — Jun. 20, 2003
  • pp: 3558–3563

Optical Approach for Determining Strain Anisotropy in Quantum Wells

Mark L. Biermann, James Diaz-Barriga, and William S. Rabinovich  »View Author Affiliations


Applied Optics, Vol. 42, Issue 18, pp. 3558-3563 (2003)
http://dx.doi.org/10.1364/AO.42.003558


View Full Text Article

Acrobat PDF (96 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Anisotropic in-plane strain arises in quantum-well systems by design or unintentionally. We propose two methods of measuring the in-plane strain anisotropy based on the optical polarization anisotropy that arises with anisotropic in-plane strain. One method uses purely optical means to determine the strain anisotropy in quantum wells under a compressive strain that is spatially varying. A second approach, applicable to quantum wells under tensile strain or with strain that does not vary with position, requires the application of a uniaxial in-plane stress. Although the second method is experimentally more difficult, it allows analysis of systems that would otherwise be inaccessible.

© 2003 Optical Society of America

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(160.2100) Materials : Electro-optical materials
(160.6000) Materials : Semiconductor materials
(300.6470) Spectroscopy : Spectroscopy, semiconductors

Citation
Mark L. Biermann, James Diaz-Barriga, and William S. Rabinovich, "Optical Approach for Determining Strain Anisotropy in Quantum Wells," Appl. Opt. 42, 3558-3563 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3558


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M.-F. Huang, E. Garmire, A. Partovi, and M. Hong, “Room temperature optical absorption characteristics of GaAs/AlGaAs multiple quantum well structures under external anisotropic strain,” Appl. Phys. Lett. 66, 736–738 (1995).
  2. M.-F. Huang, E. Garmire, and Y.-K. Kuo, “Absorption anisotropy for lattice matched GaAs/AlGaAs multiple quantum well structures under external anisotropic biaxial strain: compression along [110] and tension along [−110],” Jpn. J. Appl. Phys. 39, 1776–1781 (2000).
  3. H. Shen, M. Wraback, J. Pamulapati, P. G. Newman, M. Dutta, Y. Lu, and H. C. Kuo, “Optical anisotropy in GaAs/AlxGa1−xAs multiple quantum wells under thermally induced uniaxial strain,” Phys. Rev. B 47, 13933–13936 (1993).
  4. H. Shen, M. Wraback, J. Pamulapati, M. Dutta, P. G. Newman, A. Ballato, and Y. Lu, “Normal incidence high contrast multiple quantum well light modulator based on polarization rotation,” Appl. Phys. Lett. 62, 2908–2910 (1993).
  5. J. Pamulapati, H. Shen, M. Wraback, M. Taysing-Lara, M. Dutta, H. C. Kuo, and Y. Lu, “Normal incidence GaAs/AlGaAs multiple-quantum-well polarization modulator using an induced uniaxial strain,” IEEE Trans. Electron Devices 40, 2144–2145 (1993).
  6. M. Wraback, H. Shen, J. Pamulapati, M. Dutta, P. G. Newman, M. Taysing-Lara, and Y. Lu, “Femtosecond studies of excitonic optical non-linearities in GaAs/AlxGa1−xAs multiple quantum wells under in-plane uniaxial strain,” Surf. Sci. 305, 238–242 (1994).
  7. D. Burak, J. V. Moloney, and R. Binder, “Macroscopic versus microscopic description of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 36, 956–970 (2000).
  8. Y. C. Yeo, T. C. Chong, and M.-F. Li, “Uniaxial strain effect on the electronic and optical properties of wurtzite GaN-AlGaN quantum well lasers,” IEEE J. Quantum Electron. 34, 2224–2232 (1998).
  9. G. Fierling, X. Letartre, P. Viktorovitch, J. P. Lainé, and C. Priester, “Piezoelectrically induced electronic confinement obtained by three-dimensional elastic relaxation in III-V semiconducting overhanging beams,” Appl. Phys. Lett. 74, 1990–1992 (1999).
  10. J. W. Tomm, R. Muller, A. Barwolff, T. Elseasser, A. Gerhardt, J. Donecker, D. Lorenzen, F. X. Daiminger, S. Weiss, M. Hutter, E. Kaulfersch, and H. Reichl, “Spectroscopic measurement of packaging-induced strains in quantum-well laser diodes,” J. Appl. Phys. 86, 1196–1201 (1999).
  11. J. Lee and M. O. Vassell, “Effects of uniaxial stress on hole subbands in semiconductor quantum wells. II. Numerical results,” Phys. Rev. B 37, 8861–8866 (1988).
  12. G. Rau, A. R. Glanfield, P. C. Klipstein, N. F. Johnson, and G. W. Smith, “Optical properties of GaAs/Al1−xGaxAs quantum wells subjected to large in-plane uniaxial stress,” Phys. Rev. B 60, 1900–1914 (1999).
  13. G. Fierling, M. Buchheit, X. Letartre, M. Gendry, P. Viktorovitch, F. Sidoroff, and J. P. Laine, “Mechanical relaxation of strained semiconducting stripes: influence on optoelectronic properties,” Appl. Phys. Lett. 71, 1516–1518 (1997).
  14. M. L. Biermann, J. Diaz-Barriga, and W. S. Rabinovich, “Enhanced optical polarization anisotropy in quantum wells under anisotropic tensile strain,” IEEE J. Quantum Electron. 39, 401–403 (2003).
  15. C. Mailhiot and D. L. Smith, “k · p theory of semiconductor superlattice electronic structure. II. Application to Ga1−xInxAs-Al1−yInyAs [100] superlattices,” Phys. Rev. B 33, 8360–8372 (1986).
  16. D. L. Smith and C. Mailhiot, “k · p theory of semiconductor superlattice electronic structure. I. Formal results,” Phys. Rev. B 33, 8345–8359 (1986).
  17. C. Mailhiot and D. L. Smith, “Electronic structure of [001]- and [111]-growth-axis semiconductor superlattices,” Phys. Rev. B 35, 1242–1259 (1987).
  18. M. L. Biermann and C. R. Stroud, Jr., “Behavior of zone-center, subband energies in narrow, strongly coupled quantum wells,” Appl. Phys. Lett. 58, 505–507 (1991).
  19. P. O. Löwdin, “A note on quantum-mechanical perturbation theory,” J. Chem. Phys. 19, 1396–1401 (1951).
  20. C. Mailhiot and D. L. Smith, “Effects of compressive uniaxial stress on the electronic structure of GaAs-Ga1−xAlxAs quantum wells,” Phys. Rev. B 36, 2942–2945 (1987).
  21. G. Rau, P. C. Klipstein, V. N. Nicopoulos, and N. F. Johnson, “Analytic solutions for the valence subband mixing at the zone center of a GaAs/Al1−xGaxAs quantum well under uniaxial stress perpendicular to the growth direction,” Phys. Rev. B 54, 5700–5711 (1996).
  22. W. R. Tribe, P. C. Klipstein, G. W. Smith, and R. Grey, “Uniaxial-stress investigation of the phonon-assisted recombination mechanisms associated with the X state in type-II GaAs/AlAs superlattices,” Phys. Rev. B 54, 8721–8727 (1996).
  23. A. R. Glanfield, G. Rau, P. C. Klipstein, and G. W. Smith, “Stress induced exciton mixing in quantum wells,” Phys. Status Solidi A 211, 269–274 (1999).
  24. H. Shen, P. Parayanthal, Y. F. Liu, and P. H. Pollak, “New normalization procedure for modulation spectroscopy,” Rev. Sci. Instrum. 58, 1429–1432 (1987).
  25. J. Lee, C. Jagannath, M. O. Vassell, and E. S. Koteles, “Mixing of valence subbands in GaAs/AlxGa1−xAs multiple quantum wells by uniaxial stress,” Phys. Rev. B 37, 4164–4170 (1988).
  26. C. Jagannath, E. S. Koteles, J. Lee, Y. J. Chen, B. S. Elman, and J. Y. Chi, “Uniaxial stress dependence of spatially confined excitons,” Phys. Rev. B 34, 7027–7030 (1986).
  27. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996), p. 86.
  28. B. K. Ridley, Quantum Processes in Semiconductors, 2nd ed. (Clarendon, Oxford, 1988), pp. 184–188.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited