OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 18 — Jun. 20, 2003
  • pp: 3583–3594

Versatile Mobile Lidar System for Environmental Monitoring

Petter Weibring, Hans Edner, and Sune Svanberg  »View Author Affiliations


Applied Optics, Vol. 42, Issue 18, pp. 3583-3594 (2003)
http://dx.doi.org/10.1364/AO.42.003583


View Full Text Article

Acrobat PDF (968 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A mobile lidar (light detection and ranging) system for environmental monitoring is described. The optical and electronic systems are housed in a truck with a retractable rooftop transmission and receiving mirror, connected to a 40-cm-diameter vertically looking telescope. Two injection-seeded Nd:YAG lasers are employed in connection with an optical parametric oscillator-optical parametric amplification transmitter, allowing deep-UV to mid-IR wavelengths to be generated. Fast switching that employs piezoelectric drivers allows multiwavelength differential absorption lidar for simultaneous measurements of several spectrally overlapping atmospheric species. The system can also be used in an imaging multispectral laser-induced fluorescence mode on solid targets. Advanced LabVIEW computer control and multivariate data processing render the system versatile for a multitude of measuring tasks. We illustrate the monitoring of industrial atmospheric mercury and hydrocarbon emissions, volcanic sulfur dioxide plume mapping, fluorescence lidar probing of seawater, and multispectral fluorescence imaging of the facades of a historical monument.

© 2003 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(140.3600) Lasers and laser optics : Lasers, tunable
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(280.1120) Remote sensing and sensors : Air pollution monitoring
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(300.2530) Spectroscopy : Fluorescence, laser-induced

Citation
Petter Weibring, Hans Edner, and Sune Svanberg, "Versatile Mobile Lidar System for Environmental Monitoring," Appl. Opt. 42, 3583-3594 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3583


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).
  2. S. Svanberg, “Differential absorption lidar (DIAL),” in Air Monitoring by Spectroscopic Techniques, M. Sigrist, ed. (Wiley, New York, 1994).
  3. R. A. Robinson, P. T. Woods, and M. J. T. Milton, “DIAL measurements for air pollution and fugative-loss monitoring,” in Air Pollution and Visibility Measurements, Proc. SPIE 2506, 140–149 (1995).
  4. L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, and E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the MEDCAPHOT-TRACE campaign,” Atmos. Environ. 32, 2151–2159 (1998).
  5. F. E. Hoge, C. W. Wright, R. N. Swift, and J. K. Yungel, “Airborne laser-induced oceanic chlorophyll fluorescence: solar-induced quenching corrections by use of concurrent downwelling irradiance measurements,” Appl. Opt. 87, 3222–3226 (1998).
  6. L. Fiorani, R. Barbini, F. Colao, R. Fantoni, and R. Palucci, “Comparison between satellite and laser remote sensing of the Southern Ocean,” J. Comput. Technol. 7, 110–120 (2002).
  7. S. Svanberg, “Fluorescence lidar monitoring of vegetation status,” Phys. Scr. T58, 79–85 (1995).
  8. V. Raimondi, G. Cecchi, L. Pantani, and R. Chiari, “Fluorescence lidar monitoring of historical buildings,” Appl. Opt. 37, 1089–1098 (1998).
  9. P. Weibring, Th. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40, 6111–6120 (2001).
  10. K. Fredriksson, B. Galle, K. Nyström, and S. Svanberg, “Mobile lidar system for environmental probing,” Appl. Opt. 20, 4181–4185 (1981).
  11. H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Unéus, and W. Wendt, “Mobile remote sensing system for atmospheric monitoring,” Appl. Opt. 26, 4330–4338 (1987).
  12. P. Weibring, J. N. Smith, H. Edner, and S. Svanberg, “Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar,” Rev. Sci. Instrum., submitted for publication.
  13. F. Mellegård, “Development and construction of an automatic calibration unit for a differential absorption lidar system,” diploma paper, Lund Reports on Atomic Physics, LRAP 264 (Lund Institute of Technology, Lund, Sweden, 2000).
  14. H. Edner, J. Johansson, S. Svanberg, and E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994).
  15. I. Mochi, G. Cecchi, L. Pantani, Th. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Probing the marine environment with fluorescence lidars—comparison of three fluorosensors in a field campaign,” CNR Scientific Report RR/OST/01.03 (Consiglio Nazionale delle Ricerche, Rome, Italy, 2003).
  16. S. A. Hsu, E. A. Meindl, and G. B. Gilhousen, “Determining the power-law wind-profile exponent under near-stability conditions at sea,” Appl. Metrol. 33, 757–765 (1994).
  17. P. Weibring, M. Andersson, H. Edner, and S. Svanberg, “Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66, 383–388 (1998).
  18. P. Weibring, Ch. Abrahamsson, M. Sjöholm, J. N. Smith, H. Edner, and S. Svanberg are preparing a manuscript titled “Multicomponent chemical analysis of gas mixtures using a continuously-tuneable lidar system.
  19. K. V. Mardia and J. K. Kent, Multivariate Analysis (Academic, London, 1979).
  20. K. Esbensen, Multivariate Analysis, 5th ed. (CAMO, Oslo, 2001).
  21. A. S. Bangalore, R. A. Schaffer, G. W. Small, and M. A. Arnold, “Genetic algorithm-based method for selecting wavelength and model size for use with partial least-squares regression: application to near-infrared spectroscopy,” Anal. Chem. 68, 4200–4212 (1996).
  22. T. Lindström, U. Holst, P. Weibring, and H. Edner, “Analysis of lidar measurements using nonparametric kernel regression methods,” Appl. Phys. B 74, 155–165 (2002).
  23. H. Edner, G. W. Faris, A. Sunesson, and S. Svanberg, “Atmospheric atomic mercury monitoring using differential absorption lidar techniques,” Appl. Opt. 28, 921–930 (1989).
  24. H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, A. de Liso, R. Ferrara, and B. E. Maserti, “Differential absorption lidar mapping of atmospheric atomic mercury in Italian geothermal fields,” J. Geophys. Res. 97, 3779–3786 (1992).
  25. I. Wängberg, H. Edner, R. Ferrara, E. Zanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, and P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Science Total Environ. (to be published).
  26. P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, and L. Pantani, “Optical monitoring of volcanic sulfur dioxide emissions—comparison between four different remote-sensing spectroscopic techniques,” Optics Lasers Eng. 37, 267–284 (2002).
  27. D. Lognoli, C. Cecchi, L. Pantani, V. Raimondi, R. Chiari, Th. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Fluorescence imaging of the Parma cathedral and baptistery,” Appl. Phys. B (to be published).
  28. P. Weibring, “Environmental monitoring by multi-spectral lidar techniques,” Ph. D. dissertation, Lund Reports on Atomic Physics, LRAP-284 (Lund Institute of Technology, Lund, Sweden, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited