OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 18 — Jun. 20, 2003
  • pp: 3620–3633

Effect of multiple scattering on depolarization measurements with spaceborne lidars

Susanne Reichardt and Jens Reichardt  »View Author Affiliations

Applied Optics, Vol. 42, Issue 18, pp. 3620-3633 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (285 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An analytical model based on the integration of the scattering-angle and light-path manifold has been developed to quantify the effect of multiple scattering on cirrus measurements obtained with elastic polarization lidars from space. Light scattering by molecules and by a horizontally homogeneous cloud is taken into account. Lidar parameters, including laser beam divergence, can be freely chosen. Up to 3 orders of scattering are calculated. Furthermore, an inversion technique for the retrieval of cloud extinction profiles from measurements with elastic-backscatter lidars is proposed that explicitly takes multiple scattering into account. It is found that for typical lidar system parameters such as those of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) instrument multiple scattering does not significantly affect depolarization-ratio measurements in cirrus clouds with small to moderate optical depths. For all simulated clouds, the absolute value of the difference between measured and single-scattering volume depolarization ratio is <0.006. The particle depolarization ratio can be calculated from the measured volume depolarization ratio and the retrieved backscatter ratio without degradation of accuracy; thus characterization of the various cirrus categories in terms of the particle depolarization ratio and retrieval of cloud microphysical properties is feasible from space. The results of this study apply to polar stratospheric clouds as well.

© 2003 Optical Society of America

OCIS Codes
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3640) Remote sensing and sensors : Lidar
(290.1090) Scattering : Aerosol and cloud effects
(290.1350) Scattering : Backscattering
(290.4210) Scattering : Multiple scattering

Original Manuscript: August 31, 2002
Revised Manuscript: March 4, 2003
Published: June 20, 2003

Susanne Reichardt and Jens Reichardt, "Effect of multiple scattering on depolarization measurements with spaceborne lidars," Appl. Opt. 42, 3620-3633 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. N. Liou, R. M. Schotland, “Multiple backscattering and depolarization from water clouds for a pulsed lidar system,” J. Atmos. Sci. 28, 772–784 (1971). [CrossRef]
  2. S. R. Pal, A. I. Carswell, “Multiple scattering in atmospheric clouds: lidar observations,” Appl. Opt. 15, 1990–1995 (1976). [CrossRef]
  3. J. A. Weinman, S. T. Shipley, “Effects of multiple scattering on laser pulses transmitted through clouds,” J. Geophys. Res. 77, 7123–7128 (1972). [CrossRef]
  4. C. M. R. Platt, “Remote sounding of high clouds: III. Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981). [CrossRef]
  5. F. Nicolas, L. R. Bissonnette, P. H. Flamant, “Lidar effective multiple-scattering coefficients in cirrus clouds,” Appl. Opt. 36, 3458–3468 (1997). [CrossRef] [PubMed]
  6. G. H. Ruppersberg, M. Kerscher, M. Noormohammadian, U. G. Oppel, W. Renger, “The influence of multiple scattering on lidar returns by cirrus clouds and an effective inversion algorithm for the extinction coefficient,” Contrib. Atmos. Phys. 70, 91–107 (1997).
  7. W. Widada, H. Kinjo, H. Kuze, N. Takeuchi, M. Sasaki, “Effect of multiple scattering in the lidar measurement of tropospheric aerosol extinction profiles,” Opt. Rev. 8, 382–387 (2001). [CrossRef]
  8. U. Wandinger, “Multiple-scattering influence on extinction- and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998). [CrossRef]
  9. J. Reichardt, M. Hess, A. Macke, “Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions,” Appl. Opt. 39, 1895–1910 (2000). [CrossRef]
  10. J. Reichardt, “Error analysis of Raman differential absorption lidar ozone measurements in ice clouds,” Appl. Opt. 39, 6058–6071 (2000). [CrossRef]
  11. L. R. Bissonnette, D. L. Hutt, “Multiply scattered aerosol lidar returns—Inversion method and comparison with in situ measurements,” Appl. Opt. 34, 6959–6975 (1995). [CrossRef] [PubMed]
  12. E. W. Eloranta, P. Piironen, “Measurements of cirrus cloud optical properties and particle size with the University of Wisconsin High Spectral Resolution Lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1997), pp. 83–86. [CrossRef]
  13. E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998). [CrossRef]
  14. D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s lidar in-space technology experiment,” Proc. IEEE 84, 164–180 (1996). [CrossRef]
  15. D. M. Winker, B. A. Wielicki, “The PICASSO-CENA mission,” in Sensors, Systems, and Next Generation Satellites, H. Fujisada, J. B. Lurie, eds., Proc. SPIE3870, 26–36 (1999).
  16. S. D. Miller, G. L. Stephens, “Multiple scattering effects in the lidar pulse stretching problem,” J. Geophys. Res. 104, 22205–22219 (1999). [CrossRef]
  17. D. P. Duda, J. D. Spinhirne, E. W. Eloranta, “Atmospheric multiple scattering effects on GLAS altimetry—Part I: calculations of single pulse bias,” IEEE Trans. Geosci. Remote Sens. 39, 92–101 (2001). [CrossRef]
  18. S. R. Pal, L. R. Bissonnette, “Multiple-scattering effect on ozone retrieval from space-based differential absorption lidar measurements,” Appl. Opt. 37, 6500–6510 (1998). [CrossRef]
  19. D. M. Winker, L. R. Poole, “Monte-Carlo calculations of cloud returns for ground-based and space-based LIDARs,” Appl. Phys. B 60, 341–344 (1995). [CrossRef]
  20. C. Flesia, A. V. Starkov, “Multiple scattering from clear atmosphere obscured by transparent crystal clouds in satellite-borne lidar sensing,” Appl. Opt. 35, 2637–2641 (1996). [CrossRef] [PubMed]
  21. H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999). [CrossRef]
  22. Y. S. Balin, S. V. Samoilova, M. M. Krekova, D. M. Winker, “Retrieval of cloud optical parameters from space-based backscatter lidar data,” Appl. Opt. 38, 6365–6373 (1999). [CrossRef]
  23. P. Völger, Z. Liu, N. Sugimoto, “Multiple scattering simulations for the Japanese space lidar project ELISE,” IEEE Trans. Geosci. Remote Sens. 40, 550–559 (2002). [CrossRef]
  24. J. Reichardt, S. Reichardt, T. J. McGee, “Scattering-angle distributions of the multiple-scattering contribution to the return signals of spaceborne lidars,” in Extended Abstracts of the Eleventh International Workshop on Multiple Scattering Lidar Experiments, D. Winker, ed. (NASA Langley Research Center, Hampton, Virginia, 2001), pp. 117–121.
  25. Y.-X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001). [CrossRef]
  26. V. Noel, H. Chepfer, G. Ledanois, A. Delaval, P. H. Flamant, “Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41, 4245–4257 (2002). [CrossRef] [PubMed]
  27. M. Hess, M. Wiegner, “COP: a data library of optical properties of hexagonal ice crystals,” Appl. Opt. 33, 7740–7746 (1994). [CrossRef] [PubMed]
  28. M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998). [CrossRef]
  29. J. Reichardt, S. Reichardt, M. Hess, T. J. McGee, “Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation,” J. Geophys. Res. 107, 4562, 10.1029/2002JD002589 (2002).
  30. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993). [CrossRef] [PubMed]
  31. P. Yang, K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223–248 (1998).
  32. A. V. Starkow, M. Noormohammadian, U. G. Oppel, “A stochastic-model and a variance-reduction Monte-Carlo method for the calculation of light transport,” Appl. Phys. B 60, 335–340 (1995). [CrossRef]
  33. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef] [PubMed]
  34. K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976). [CrossRef]
  35. J. Reichardt, U. Wandinger, M. Serwazi, C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996). [CrossRef]
  36. K. Sassen, J. M. Comstock, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part III: radiative properties,” J. Atmos. Sci. 58, 2113–2127 (2001). [CrossRef]
  37. K. Sassen, S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part II: microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2112 (2001). [CrossRef]
  38. M. Del Guasta, “Simulation of LIDAR returns from pristine and deformed hexagonal ice prisms in cold cirrus by means of ‘face tracing’,” J. Geophys. Res. 106, 12589–12602 (2001). [CrossRef]
  39. W. Carnuth, R. Reiter, “Cloud extinction profile measurements by lidar using Klett’s inversion method,” Appl. Opt. 25, 2899–2907 (1986). [CrossRef]
  40. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef] [PubMed]
  41. Y. Sasano, E. V. Browell, S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985). [CrossRef] [PubMed]
  42. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef] [PubMed]
  43. J. Reichardt, “Optical and geometrical properties of northern midlatitude cirrus clouds observed with a UV Raman lidar,” Phys. Chem. Earth 24, 255–260 (1999). [CrossRef]
  44. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991). [CrossRef]
  45. J. Reichardt, S. Reichardt, A. Behrendt, T. J. McGee, “Correlations among the optical properties of cirrus-cloud particles: implications for spaceborne remote sensing,” Geophys. Res. Lett. 29, 1668, 10.1029/2002GL014836 (2002).
  46. E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, A. F. Tuck, “Airborne lidar observations in the wintertime Arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited