OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 18 — Jun. 20, 2003
  • pp: 3634–3646

Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations

Dariusz Stramski and Jacek Piskozub  »View Author Affiliations


Applied Optics, Vol. 42, Issue 18, pp. 3634-3646 (2003)
http://dx.doi.org/10.1364/AO.42.003634


View Full Text Article

Enhanced HTML    Acrobat PDF (269 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an approach based on three-dimensional Monte Carlo radiative transfer simulations for estimating scattering error in measurements of light absorption by aquatic particles with a typical laboratory double-beam spectrophotometer. The scattering error is calculated by combining the weighting function describing the angular distribution of photon losses that are due to scattering on suspended particles with the volume scattering function of particles. We applied this method to absorption measurements made on marine phytoplankton, a diatom Thalassiosira pseudonana and a cyanobacterium Synechococcus. Assuming that the scattering phase function is described by the Henyey-Greenstein formula, we determined the backscatter probability of phytoplankton, which yields the best correction for scattering error at a light wavelength of 750 nm, where true absorption is null. The backscattering ratio estimated for both phytoplankton species is significantly higher than previously reported data based on Mie-scattering calculations for homogeneous spheres. Depending on the type of particles, the corrected absorption spectra obtained with our method may be similar or significantly different from spectra obtained with the null-point correction based on wavelength-independent scattering error.

© 2003 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.5850) Scattering : Scattering, particles
(300.1030) Spectroscopy : Absorption
(300.6550) Spectroscopy : Spectroscopy, visible

History
Original Manuscript: October 14, 2002
Revised Manuscript: February 25, 2003
Published: June 20, 2003

Citation
Dariusz Stramski and Jacek Piskozub, "Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations," Appl. Opt. 42, 3634-3646 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3634


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 35, 562–582 (1983). [CrossRef]
  2. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge U. Press, Cambridge, UK, 1994). [CrossRef]
  3. J. T. O. Kirk, “Monte Carlo modeling of the performance of a reflective tube absorption meter,” Appl. Opt. 31, 6463–6468 (1992). [CrossRef] [PubMed]
  4. J. R. V. Zaneveld, J. Kitchen, C. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994). [CrossRef]
  5. J. Piskozub, P. J. Flatau, J. R. V. Zaneveld, “Monte Carlo study of the scattering error of a quartz reflective absorption tube,” J. Atmos. Oceanic Technol. 18, 438–445 (2001). [CrossRef]
  6. R. A. Reynolds, D. Stramski, D. A. Kiefer, “The effect of nitrogen-limitation on the absorption and scattering properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr. 42, 881–892 (1997). [CrossRef]
  7. D. Stramski, A. Shalapyonok, R. A. Reynolds, “Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day-night cycle in natural irradiance,” J. Geophys. Res. 100, 13295–13307 (1995). [CrossRef]
  8. M. Babin, D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47, 911–915 (2002). [CrossRef]
  9. D. Stramski, R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38, 1347–1364 (1993). [CrossRef]
  10. H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998). [CrossRef]
  11. W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Villancourt, K. A. Kilpatrick, J. J. Fritz, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541–1558 (1999). [CrossRef]
  12. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  13. A. Bricaud, A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25, 571–580 (1986). [CrossRef] [PubMed]
  14. D. Stramski, A. Morel, A. Bricaud, “Modeling the light attenuation and scattering by spherical phytoplankton cells: a retrieval of the bulk refractive index,” Appl. Opt. 27, 3954–3956 (1988). [CrossRef] [PubMed]
  15. D. Stramski, C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538–549 (1997). [CrossRef]
  16. J. Piskozub, “Effects of surface waves and sea bottom on self-shading of in-water optical instruments” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 300–308 (1994). [CrossRef]
  17. J. Piskozub, A. R. Weeks, J. N. Schwartz, I. S. Robinson, “Self-shading of upwelling irradiance for an instrument with sensors on a sidearm,” Appl. Opt. 39, 1872–1878 (2000). [CrossRef]
  18. F. M. Sogandares, E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997). [CrossRef]
  19. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  20. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981)∼. [CrossRef] [PubMed]
  21. A. Morel, “Diffusion de la lumière par les eaux de mer: résultats expérimentaux et approche théorique,” in Optics of the Sea, AGARD Lecture Series 63 (Advisory Group for Aerospace Research and Development, Paris, 1973), Sect. 3, pp. 1–76.
  22. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  23. T. J. Petzold, “Volume scattering functions for selected ocean waters,” SIO Ref. 72–78 (Scripps Institution of Oceanography, La Jolla, Calif., 1972).
  24. L. C. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  25. V. I. Haltrin, “One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater,” Appl. Opt. 41, 1022–1028 (2002). [CrossRef] [PubMed]
  26. C. D. Mobley, L. K. Sundman, E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002). [CrossRef] [PubMed]
  27. Y.-H. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39, 1835–1855 (1992). [CrossRef]
  28. R. A. Meyer, “Light scattering from biological cells: dependence of backscatter radiation on membrane thickness and refractive index,” Appl. Opt. 18, 585–588 (1979). [CrossRef] [PubMed]
  29. A. Bricaud, J. R. V. Zaneveld, J. C. Kitchen, “Backscattering efficiency of coccolithophorids: use of a three-layered sphere model,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 27–33 (1992). [CrossRef]
  30. J. C. Kitchen, J. R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol Oceanogr. 37, 1680–1690 (1992). [CrossRef]
  31. R. D. Vaillancourt, C. Brown, R. R. L. Guillard, “A taxonomic survey of the optical properties of marine phytoplankton with special emphasis on the backscattering coefficient,” Eos Trans. Am. Geophys. Union 80, 119–120 (1999).
  32. R. A. Maffione, D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36, 6057–6067 (1997). [CrossRef] [PubMed]
  33. X. Zhang, M. Lewis, M. Lee, B. Johnson, G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002). [CrossRef]
  34. A. Morel, Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates. A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991). [CrossRef]
  35. D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited