OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 18 — Jun. 20, 2003
  • pp: 3670–3677

Periodically locked continuous-wave cavity ringdown spectroscopy

Nicola J. van Leeuwen, Jan C. Diettrich, and Andrew C. Wilson  »View Author Affiliations

Applied Optics, Vol. 42, Issue 18, pp. 3670-3677 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (134 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a simple periodically locked cw cavity ringdown spectroscopy technique that enables a very large number of ringdown events to be rapidly acquired. An external cavity diode laser is locked to a high-finesse cavity, and as many as 16,000 ringdown events per second are obtained by periodically switching off the light entering the high-finesse cavity. Following each ringdown event, the light to the cavity is switched back on and cavity lock is rapidly reacquired. Limited only by our relatively modest digitization rate, we obtained a minimum detectable absorption loss of 4.7 × 10-9 cm-1, but we show that faster digitization could provide a sensitivity of 5.9 × 10-10 cm-1 Hz-1/2.

© 2003 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.2020) Lasers and laser optics : Diode lasers
(300.0300) Spectroscopy : Spectroscopy

Original Manuscript: October 21, 2002
Revised Manuscript: March 4, 2003
Published: June 20, 2003

Nicola J. van Leeuwen, Jan C. Diettrich, and Andrew C. Wilson, "Periodically locked continuous-wave cavity ringdown spectroscopy," Appl. Opt. 42, 3670-3677 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Z. Anderson, J. C. Frisch, C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984). [CrossRef]
  2. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ringdown spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998). [CrossRef]
  3. K. W. Busch, M. A. Busch, Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, Vol. 720 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1999). [CrossRef]
  4. J. D. Winefordner, I. B. Gornushkin, D. Pappas, O. I. Matveev, B. W. Smith, “Novel uses of lasers in atomic spectroscopy,” J. Anal. At. Spectrom. 15, 1161–1189 (2000). [CrossRef]
  5. G. Berden, R. Peeters, G. Meijer, “Cavity ringdown spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000). [CrossRef]
  6. A. O’Keefe, D. A. G. Deacon, “Cavity ringdown optical spectrometer for absorption-measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  7. D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ringdown spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997). [CrossRef]
  8. K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ringdown spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998). [CrossRef]
  9. M. Hippler, M. Quack, “CW cavity ringdown infrared absorption spectroscopy in pulsed supersonic jets: nitrous oxide and methane,” Chem. Phys. Lett. 314, 273–281 (1999). [CrossRef]
  10. M. Metsala, S. F. Yang, A. Vaittinen, D. Permogorov, L. Halonen, “High-resolution cavity ringdown study of acetylene between 12 260 and 12 380 cm-1,” Chem. Phys. Lett. 346, 373–378 (2001). [CrossRef]
  11. B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000). [CrossRef]
  12. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Appl. Opt. 40, 5522–5529 (2001). [CrossRef]
  13. G. Totschnig, D. S. Baer, J. Wang, E. Winter, H. Hofbauer, R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39, 2009–2016 (2000). [CrossRef]
  14. M. Murtz, B. Frech, W. Urban, “High-resolution cavity leak-out absorption spectroscopy in the 10-μm region,” Appl. Phys. B 68, 243–249 (1999). [CrossRef]
  15. J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, H. W. Lee, “Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38, 1859–1865 (1999). [CrossRef]
  16. J. Poirson, F. Bretenaker, M. Vallet, A. LeFloch, “Analytical and experimental study of ringing effects in a Fabry-Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14, 2811–2817 (1997). [CrossRef]
  17. Z. Y. Li, R. G. T. Bennett, G. E. Stedman, “Swept-frequency induced optical cavity ringing,” Opt. Commun. 86, 51–57 (1991). [CrossRef]
  18. K. W. An, C. H. Yang, E. E. Dasari, M. S. Feld, “Cavity ringdown technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20, 1068–1070 (1995). [CrossRef]
  19. Y. B. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319, 131–137 (2000). [CrossRef]
  20. Y. B. He, B. J. Orr, “Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity,” Chem. Phys. Lett. 335, 215–220 (2001). [CrossRef]
  21. R. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  22. R. W. Fox, C. W. Oates, L. W. Hollberg, “Stabilizing diode lasers to high finesse cavities,” in Cavity-Enhanced Spectroscopies, R. D. van Zee, J. P. Looney, eds., Vol. 40 of Experimental Methods in the Physical Sciences (Elsevier Science, New York, 2002).
  23. B. A. Paldus, C. C. Harb, T. G. Spence, B. Willke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998). [CrossRef]
  24. M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ringdown spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998). [CrossRef]
  25. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilkie, R. L. Byer, “A laser-locked cavity ringdown spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000). [CrossRef]
  26. C. R. Bucher, K. K. Lehmann, D. F. Plusquellic, G. T. Fraser, “Doppler-free nonlinear absorption in ethylene by use of continuous-wave cavity ringdown spectroscopy,” Appl. Opt. 39, 3154–3164 (2000). [CrossRef]
  27. A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998). [CrossRef]
  28. M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency-stabilization of visible and infrared semiconductor-lasers for high-resolution spectroscopy,” Opt. Communi. 85, 355–359 (1991). [CrossRef]
  29. C. E. Wieman, L. Hollberg, “Using diode-lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991). [CrossRef]
  30. G. D. Rovera, G. Santarelli, A. Clairon, “A laser-diode system stabilized on the cesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994). [CrossRef]
  31. J. Ye, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” Ph.D. dissertation (University of Colorado, Boulder, Colorado, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited