OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 19 — Jul. 1, 2003
  • pp: 3726–3736

Particle identification by laser-induced incandescence in a solid-state laser cavity

Michelle Stephens, Nelson Turner, and Jon Sandberg  »View Author Affiliations

Applied Optics, Vol. 42, Issue 19, pp. 3726-3736 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (202 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The laser-induced incandescence of a particle of unknown size and composition can be detected simultaneously with the light elastically scattered by the particle, providing information on both the size and composition of the particle. The technique relies on vaporization of the particle; detection of the incandescence signal at the time of vaporization allows determination of the boiling point of the particle, which can in turn be related to the composition of the particle. The elastically scattered signal provides information about the size of the particle and confirmation that it was vaporized. The technique is demonstrated by directing particles through a Nd:YAG laser cavity with ∼106 W/cm2 of circulating intensity. Elements such as tungsten, silicon, and graphite, as well as common aerosols such as soot, can be detected and identified.

© 2003 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(290.5850) Scattering : Scattering, particles

Original Manuscript: August 9, 2002
Revised Manuscript: March 7, 2003
Published: July 1, 2003

Michelle Stephens, Nelson Turner, and Jon Sandberg, "Particle identification by laser-induced incandescence in a solid-state laser cavity," Appl. Opt. 42, 3726-3736 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Fabiny, “Sensing rogue particles with optical scattering,” Opt. Photon. News, January1998, pp. 34–38.
  2. R. G. Knollenberg, “The measurement of latex particle sizes using scattering ratios in the Rayleigh scattering size range,” J. Aerosol Sci. 20, 331–345 (1989). [CrossRef]
  3. W. D. Reents, S. W. Downey, A. B. Emerson, A. M. Mujsce, A. J. Muller, D. J. Siconolfi, J. D. Sinclair, A. G. Swanson, “Single particle characterization by time-of-flight mass spectrometry,” Aerosol Sci. Technol. 23, 263–270 (1995). [CrossRef]
  4. P. J. McKeown, M. V. Johnston, D. M. Murphy, “On-line single-particle analysis by laser desorption mass spectrometry,” Anal. Chem. 63, 2069–2071 (1991). [CrossRef]
  5. J. Gelbwachs, M. Birnbaum, “Fluorescence of atmospheric aerosols and lidar implications,” Appl. Opt. 12, 2443–2447 (1973). [CrossRef]
  6. C. J. Dasch, “Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984). [CrossRef] [PubMed]
  7. S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998). [CrossRef]
  8. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996). [CrossRef] [PubMed]
  9. R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995). [CrossRef]
  10. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984). [CrossRef] [PubMed]
  11. A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977). [CrossRef]
  12. C. J. Dasch, “Spatially resolved soot-absorption measurements in flames using laser vaporization of particles,” Opt. Lett. 9, 214–215 (1984). [CrossRef] [PubMed]
  13. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994). [CrossRef]
  14. R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998). [CrossRef]
  15. J. R. Fincke, C. L. Jeffery, S. B. Englert, “In-flight measurement of particle size and temperature,” J. Phys. E 21, 367–370 (1998). [CrossRef]
  16. E. A. Rohlfing, D. W. Chandler, “Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow,” Chem. Phys. Lett. 170, 44–50 (1990). [CrossRef]
  17. T. Joutsenoja, J. Stenberg, R. Hernberg, M. Aho, “Pyrometric measurement of the temperature and size of individual combusting fuel particles,” Appl. Opt. 36, 1525–1535 (1997). [CrossRef] [PubMed]
  18. J. R. Fincke, W. D. Swank, C. L. Jeffery, C. A. Mancuso, “Simultaneous measurement of particle size, velocity, and temperature,” Meas. Sci. Technol. 4, 559–565 (1993). [CrossRef]
  19. T. Joutsenoja, R. Hernberg, “Pyrometric sizing of high-temperature particles in flow reactors,” Appl. Opt. 37, 3487–3493 (1998). [CrossRef]
  20. P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996). [CrossRef]
  21. A. V. Filippov, M. W. Markus, P. Roth, “In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination,” J. Aerosol. Sci. 30, 71–87 (1999). [CrossRef]
  22. R. L. Vander Wal, T. M. Ticich, J. R. West, “Laser-induced incandescence applied to metal nanostructures,” Appl. Opt. 38, 5867–5879 (1991). [CrossRef]
  23. R. A. Keller, N. S. Nogar, “Gasdynamic focusing for sample concentration in ultrasensitive analysis,” Appl. Opt. 23, 2146–2151 (1984). [CrossRef] [PubMed]
  24. F. A. Williams, “On vaporization of mist by radiation,” Int. J. Heat Mass Transfer 8, 575–587 (1965). [CrossRef]
  25. R. L. Armstrong, “Interactions of absorbing aerosols with intense light beams,” J. Appl. Phys. 56, 2142–2153 (1984). [CrossRef]
  26. C. A. Sleicher, S. W. Churchill, “Radiant heating of dispersed particles,” Ind. Eng. Chem. 48, 1819–1824 (1956). [CrossRef]
  27. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1991).
  28. C. J. Smithells, Metals Reference Handbook, 4th ed. (Butterworths, London, 1967).
  29. Periodic Table of the Elements, produced by Sargent-Welch Scientific Company, Skokie, Ill., 1980.
  30. F. P. Bundy, “Pressure-temperature phase diagram of elemental carbon,” Physica A 156, 169–178 (1989). [CrossRef]
  31. R. A. Paquin, “Properties of metals,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Vol. 2, pp. 35–49.
  32. B. M. Vaglieco, F. Beretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV-visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990). [CrossRef]
  33. J. F. O’Hanlon, A User’s Guide to Vacuum Technology, 2nd ed. (Wiley, New York, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited