OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 19 — Jul. 1, 2003
  • pp: 3776–3779

Investigation of the writing mechanism of electric-arc-induced long-period fiber gratings

Abdelrafik Malki, Georges Humbert, Youcef Ouerdane, Aziz Boukhenter, and Azzedine Boudrioua  »View Author Affiliations

Applied Optics, Vol. 42, Issue 19, pp. 3776-3779 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The mechanism for inscription of electric-arc-induced long-period gratings in SMF28 fiber was studied. The refractive-index profiles of irradiated fiber samples were measured, and their structures were investigated by Raman and luminescence spectroscopy. Slight geometrical deformations of the irradiated fiber were measured. A significant change in the Raman spectrum range from 200 to 700 cm-1 caused by the electric arc is reported. The results show a decrease in the intensity of this band, indicating a modification, such as densification, of the glass structure. No modification of the fictive temperature was measured. A large increase in the red luminescence band was also observed and attests to the creation of defects in the fiber network structure.

© 2003 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(160.2290) Materials : Fiber materials
(300.6450) Spectroscopy : Spectroscopy, Raman

Original Manuscript: January 17, 2003
Published: July 1, 2003

Abdelrafik Malki, Georges Humbert, Youcef Ouerdane, Aziz Boukhenter, and Azzedine Boudrioua, "Investigation of the writing mechanism of electric-arc-induced long-period fiber gratings," Appl. Opt. 42, 3776-3779 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Vensarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, “Long-period fiber-grating based gain equalizers,” Opt. Lett. 21, 336–338 (1996). [CrossRef]
  2. P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, A. M. Vengsarkar, “Broadband erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” Photon. Technol. Lett. 9, 1343–1345 (1997). [CrossRef]
  3. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–64 (1996). [CrossRef]
  4. O. Duhem, A. DaCosta, J. F. Henninot, M. Douay, “Long period copper-coated grating as an electrically tunable wavelength-selective filter,” Electron. Lett. 35, 1014–1015 (1999). [CrossRef]
  5. D. B. Stegall, T. Erdogan, “Dispersion control with use of long period fiber gratings,” J. Opt. Soc. Am. A 17, 304–312 (2000). [CrossRef]
  6. M. Das, K. Thyagarajan, “Dispersion compensation using uniform long period gratings,” Opt. Commun. 190, 159–163 (2001). [CrossRef]
  7. V. Bathia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996). [CrossRef]
  8. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996). [CrossRef]
  9. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, A. M. Vengsarkar, “Long-period fibre gratings fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998). [CrossRef]
  10. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24, 646–648 (1999). [CrossRef]
  11. G. Rego, O. Okhotnikov, E. Dianov, V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19, 1574–1579 (2001). [CrossRef]
  12. E. M. Dianov, V. G. Plotnichenko, V. V. Koltashev, Yu. N. Pyrkov, “UV-irradiation-induced structural transformation of germanoscilicates glass fiber,” Opt. Lett. 22, 1754–1756 (1997). [CrossRef]
  13. J. W. Chan, T. Husser, S. Risbud, D. M. Krol, “Structural changes in fused silica after exposure to femtosecond laser pulses,” Opt. Lett. 26, 1726–1728 (2001). [CrossRef]
  14. G. Humbert, A. Malki, “Characterization at very high temperature of electric arc-induced long-period gratings,” Opt. Commun. 208, 329–335 (2002). [CrossRef]
  15. F. L. Galeener, “Planar rings in glasses,” Solid. State Commun. 44, 1037–1040 (1982). [CrossRef]
  16. V. N. Novikov, E. Duval, A. Kisliuk, A. P. Sokolov, “A model of low-frequency Raman scattering in glasses comparison of Brillouin and Raman data,” J. Chem. Phys. 102, 4691–4698 (1995). [CrossRef]
  17. C. H. Polsky, K. H. Smith, G. H. Wolf, “Effect of pressure on absolute Raman scattering cross section of SiO2 and GeO2 glasses,” J. Non-Cryst. Solids 248, 159–168 (1999). [CrossRef]
  18. R. J. Hemley, H. K. Mao, P. M. Bell, B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett. 57, 747–750 (1986). [CrossRef] [PubMed]
  19. H. Hosono, Y. Ikuta, T. Kinoshita, M. Hirano, “Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2,” Phys. Rev. Lett. 87, 175501 (2001). [CrossRef]
  20. J. Jäckle, “Low frequency Raman scattering in glasses,” in Amorphous Solids, W. A. Phillips, ed. (Springer-Verlag, Berlin, 1981), pp. 135–160. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited