OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 19 — Jul. 1, 2003
  • pp: 3785–3791

Design optimization of a dual-core dispersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers

Kamna Pande and Bishnu P. Pal  »View Author Affiliations


Applied Optics, Vol. 42, Issue 19, pp. 3785-3791 (2003)
http://dx.doi.org/10.1364/AO.42.003785


View Full Text Article

Acrobat PDF (148 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report design optimization in terms of index-profile parameters of a dual-core dispersion-slope-compensating fiber suitable for broadband dispersion compensation in standard G.655 and G.655b single-mode fibers over the C and L bands of fiber amplifiers and additionally over the S band for the G.655b fibers. It takes into account profiles that can be achieved with state-of-the-art fabrication techniques such as modified chemical-vapor deposition. Relatively high mode effective areas ensure the reduced sensitivity of the fiber to detrimental nonlinear effects when the fiber is integrated into a dense wavelength-division-multiplexed network. The theoretical figures of merit of these DCFs were found to be ≥700 (ps/dB)/nm; furthermore, the estimated bend losses were also quite low, even for bend radii as small as 16 mm.

© 2003 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2430) Fiber optics and optical communications : Fibers, single-mode

History
Original Manuscript: October 16, 2002
Revised Manuscript: April 10, 2003
Published: July 1, 2003

Citation
Kamna Pande and Bishnu P. Pal, "Design optimization of a dual-core dispersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers," Appl. Opt. 42, 3785-3791 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-19-3785


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Bigo, Y. Frignac, G. Charlet, W. Idler, S. Borne, H. Gross, R. Dischler, W. Poehlmann, P. Tran, C. Simonneau, D. Bayart, G. Veith, A. Jourdan, J.-P. Hamaide, “10.2 Tbit/s (256 × 42.7 Gbit/s PDM/WDM) transmission over 100 km Teralight fiber with 1.28 bit/s/Hz spectral efficiency,” in Optical Fiber Communication Conference OFC’01, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper PD25.
  2. K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, T. Ono, “10.92-Tb/s (273 × 40-Gb/s) triple-band/ultra-dense WDM optical-repeatered transmission experiment,” in Optical Fiber Communication Conference OFC’01, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper PD24.
  3. H. Sotobayashi, W. Chujo, K. Kitayama, “1.6 bit/s/Hz, 6.4 Tbit/s OCDM/WDM (4OCDM × 40WDM × 40Gbit/s) transmission experiment,” in Proceedings of the 27th European Conference on Optical Communication ECOC’01 (ECOC2001, Amsterdam, 2001), pp. 6–7.
  4. N. Uchida, “Development and future prospect of optical fiber technologies,” IEICE Trans. Electron. E85-C, 868–880 (2002).
  5. Y. Liu, W. B. Mattingly, D. K. Smith, C. E. Lacy, J. A. Cline, E. M. De Liso, “Design and fabrication of locally dispersion-flattened large effective area fibers,” in Proceedings of the 24th European Conference on Optical Communication ECOC’98 (ECOC’98, Madrid, 1998), pp. 37–38.
  6. D. W. Peckham, A. F. Judy, R. B. Kummer, “Reduced dispersion slope, non-zero dispersion fiber,” in Proceedings of the 24th European Conference on Optical Communication ECOC’98 (ECOC’98, Madrid, 1998), pp. 139–140.
  7. See J. Ryan, “ITU G.655 adopts higher dispersion for DWDM,” Lightwave 18 (2001).
  8. Y. Frignac, S. Bigo, “Numerical optimization of residual dispersion in dispersion managed systems at 40 Gb/s,” in Optical Fiber Communication Conference OFC2000, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 48–50.
  9. Y. Danziger, D. Askegard, “High-order-mode fiber—an innovative approach to chromatic dispersion management that enables optical networking in long-haul high-speed transmission systems,” Opt. Networks Mag. 2, 40–50 (2001).
  10. T. Sakamoto, “S-band fiber optic amplifiers,” in Optical Fiber Communication Conference OFC’01, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper TuQ1.
  11. K. Rottwitt, A. J. Stenz, “Raman amplification in lightwave communications systems,” in Optical Fiber Telecommunications, I. P. Kaminow, T. Li, eds. (Academic, San Diego, Calif., 2002), Vol. IVA, pp. 213–257.
  12. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987). [CrossRef] [PubMed]
  13. L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164–180 (2000). [CrossRef]
  14. V. Srikant, “Broadband dispersion and dispersion slope compensation in high bit rate and ultra long haul systems,” in Optical Fiber Communication Conference OFC’01, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 1–3.
  15. C. Lin, H. Kogelnik, L. G. Cohen, “Optical-pulse equalization and low-dispersion transmission in single-mode fibers in the 1.3–1.7 μm spectral region,” Opt. Lett. 5, 476–478 (1980). [CrossRef] [PubMed]
  16. H. Izadpanah, C. Lin, J. Gimlett, H. Johnson, W. Way, P. Kaiser, “Dispersion compensation for upgrading interoffice networks built with 1310 nm optimized SMFs using an equalizer fiber, EDFAs and 1310/1550 nm WDM,” in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1993), pp. 371–373.
  17. M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, M. Nishimura, “Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB,” Electron. Lett. 30, 161–161 (1994). [CrossRef]
  18. A. M. Vengsarkar, A. E. Miller, W. A. Reed, “Highly efficient single-mode fiber for broadband dispersion compensation,” in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1993), pp. 56–59.
  19. T. Tsuda, Y. Akasaka, S. Sentsui, K. Aiso, Y. Suzuki, T. Kamiya, “Broadband dispersion slope compensation of dispersion shifted fiber using negative slope fiber,” in Proceedings of the 24th European Conference on Optical Communication ECOC’98 (ECOC’98, Madrid, 1998), pp. 233–234.
  20. L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, P. Kristensen, T. Veng, D. Magnussen, “Dispersion compensating fibers and perspectives for future developments,” in Proceedings of the 26th European Conference on Optical Communication ECOC’2000 (ECOC2000, Munich, 2000), pp. 91–94.
  21. B. P. Pal, K. Pande, “Design optimization of a dual-core dispersion slope compensating fiber for DWDM transmission through G.652 single mode fibers,” Opt. Commun. 201, 335–344 (2002). [CrossRef]
  22. Y. Nagasawa, K. Aikawa, N. Shamoto, A. Wada, Y. Sugimasa, I. Suzuki, Y. Kikuchi, “High performance dispersion compensating fiber module,” Fujikura Tech. Rev. 30, 1–7 (2001).
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1995).
  24. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Tech. Lett. 8, 1510–1512 (1996). [CrossRef]
  25. J. L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, K. Thyagarajan, “-1800 (ps/nm)/km chromatic dispersion at 1.55 μm in dual concentric core fiber,” Electron. Lett. 36, 1689–1691 (2000). [CrossRef]
  26. J. L. Auguste, J.-M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, B. P. Pal, “Conception, realization and characterization of a very high negative dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002). [CrossRef]
  27. K. Petermann, “Leaky mode behaviour of optical fibres with non-circularly symmetric refractive index profile,” AEU 31, 201–204 (1977).
  28. R. J. Nuyts, Y. K. Park, P. Gallion, “Dispersion equalization of a 10 Gb/s repeater transmission system using dispersion compensating fibers,” J. Lightwave Technol. 15, 31–42 (1997). [CrossRef]
  29. G. Monnom, L.P.M.C., University of Nice—Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France (personal communication, 2001).
  30. R. Tewari, B. P. Pal, U. K. Das, “Dispersion-shifted dual-shape core fibers: optimization based on spot size definitions,” J. Lightwave Technol. 10, 1–5 (1992). [CrossRef]
  31. M. R. Shenoy, K. Thyagarajan, A. K. Ghatak, “Numerical analysis of optical fibers using matrix approach,” J. Lightwave Technol. 10, 1285–1290 (1988). [CrossRef]
  32. L. B. Jeunhomme, Single Mode Fiber Optics (Marcel Dekker, New York, 1983).
  33. A. Sarkar, “Single-mode fiber designs for telecommunications,” in Fundamentals of Fiber Optics in Telecommunication and Sensor System, B. P. Pal, ed. (Wiley, New York, 1992), pp. 111–125.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited