OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 19 — Jul. 1, 2003
  • pp: 3800–3810

Full-Field Birefringence Imaging by Thermal-Light Polarization-Sensitive Optical Coherence Tomography. I. Theory

Julien Moreau, Vincent Loriette, and Albert-Claude Boccara  »View Author Affiliations


Applied Optics, Vol. 42, Issue 19, pp. 3800-3810 (2003)
http://dx.doi.org/10.1364/AO.42.003800


View Full Text Article

Acrobat PDF (388 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for measuring birefringence by use of thermal-light polarization-sensitive optical coherence tomography is presented. The use of thermal light brings to polarization-sensitive optical coherence tomography a resolution in the micrometer range in three dimensions. The instrument is based on a Linnik interference microscope and makes use of achromatic quarter-wave plates. A mathematical representation of the instrument is presented here, and the detection scheme is described, together with a discussion of the validity domain of the equations used to evaluate the birefringence in the presence of white-light illumination.

© 2003 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(260.1440) Physical optics : Birefringence

Citation
Julien Moreau, Vincent Loriette, and Albert-Claude Boccara, "Full-Field Birefringence Imaging by Thermal-Light Polarization-Sensitive Optical Coherence Tomography. I. Theory," Appl. Opt. 42, 3800-3810 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-19-3800


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. M. Mackowski, L. Pinard, L. Dognin, P. Ganau, B. Lagrange, C. Michel, and M. Morgue, “Different approaches to improve the wavefront of low-loss mirrors used in the VIRGO gravitational wave antenna,” Appl. Surf. Sci. 151, 86–90 (1999).
  2. J.-Y. Vinet, V. Brisson, S. Braccini, I. Ferrante, L. Pinard, F. Bondu, and E. Tourni, “Scattered light noise in gravitational wave interferometric detectors: a statistical approach,” Phys. Rev. D 56, 6085–6095 (1997).
  3. L. Vabre, V. Loriette, A. Dubois, J. Moreau, and A. C. Boccara, “Imagery of local defects in multilayer components by short coherence length interferometry,” Opt. Lett. 27, 1899–1901 (2002).
  4. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
  5. J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, “Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,” Opt. Express 3, 212–218 (1998), http://www.opticsexpress.org.
  6. M. J. Everett, K. Schoenenberger, B. W. Colston, Jr., and L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).
  7. K. Schoenenberger, B. W. Colston, Jr., D. J. Maitland, L. B. Da Silva, and M. J. Everett, “Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography,” Appl. Opt. 37, 6026–6036 (1998).
  8. J. F. de Boer, T. E. Milnerand, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
  9. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537–539 (1999).
  10. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000).
  11. C. K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001), http://www.opticsexpress.org.
  12. J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Simplified method for polarization-sensitive optical coherence tomography,” Opt. Lett. 26, 1069–1071 (2001).
  13. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
  14. A. M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathé, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Opt. Express 10, 349–353 (2002), http://www.opticsexpress.org.
  15. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).
  16. P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
  17. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
  18. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnick microscope,” Appl. Opt. 41, 805–812 (2002).
  19. A. Dubois, L. Vabre, and A. C. Boccara, “Sinusoidally phase-modulated interference microscope for high-speed high-resolution topographic imagery,” Opt. Lett. 26, 1873–1875 (2001).
  20. A. Dubois, “Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets,” J. Opt. Soc. Am. A 18, 1972–1979 (2001).
  21. L. Vabre, A. Dubois, M. C. Potier, J. L. Stehlé, and A. C. Boccara, “DNA microarray inspection by interference microscopy,” Rev. Sci. Instrum. 72, 2834–2836 (2001).
  22. A. Dubois, J. Selb, L. Vabre, and A.-C. Boccara, “Phase measurements with wide-aperture interferometers,” Appl. Opt. 39, 2326–2331 (2000).
  23. E. Collett, Polarized Light: Fundamental and Applications, Vol. 36 of Optical Engineering Series (Marcel Dekker, New York, 1993).
  24. J. F. Mosiño, A. Starodumov, O. Barbosa-García, and V. N. Filippov, “Propagation of partially polarized light in dichroic and birefringent media,” J. Opt. B 3, 159–165 (2001).
  25. P. Hariharan and M. Roy, “White-light phase stepping interferometry: measurement of the fractional interference order,” J. Mod. Opt. 42, 2357–2360 (1995).
  26. A. Harasaki, J. Schmit, and J. C. Wyant, “Improved vertical-scanning interferometry,” Appl. Opt. 39, 2107–2115 (2000).
  27. K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13, 832–843 (1996).
  28. P. Sandoz, “An algorithm for profilometry by white-light phase-shifting interferometry,” J. Mod. Opt. 43, 1545–1554 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited