OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 19 — Jul. 1, 2003
  • pp: 3864–3881

Fourier Analysis Near-Field Polarimetry for Measurement of Local Optical Properties of Thin Films

Lori S. Goldner, Michael J. Fasolka, Sophie Nougier, Hoang-Phi Nguyen, Garnett W. Bryant, Jeeseong Hwang, Kenneth D. Weston, Kathryn L. Beers, Augustine Urbas, and Edwin L. Thomas  »View Author Affiliations


Applied Optics, Vol. 42, Issue 19, pp. 3864-3881 (2003)
http://dx.doi.org/10.1364/AO.42.003864


View Full Text Article

Acrobat PDF (2184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present measurements of the local diattenuation and retardance of thin-film specimens by using techniques that combine near-field scanning optical microscopy (NSOM) and a novel polarization-modulation (PM) polarimetry utilizing Fourier analysis of the detected intensity signal. Generally, quantitative near-field polarimetry is hampered by the optical anisotropy of NSOM probes. For example, widely used aluminum-coated pulled-fiber aperture probes typically exhibit a diattenuation near 10%. Our analysis of aperture diattenuation demonstrates that the usual techniques for nulling a PM polarimeter result in a nonzero residual probe retardance in the presence of a diattenuating tip. However, we show that both diattenuation and retardance of the sample can be determined if the corresponding tip properties are explicitly measured and accounted for in the data. In addition, in thin films (<100 nm thick), where the sample retardance and diattenuation are often small, we show how to determine these polarimetric quantities without requiring alignment of the fast and diattenuating axes, which is a more general case than has been previously discussed. We demonstrate our techniques by using two types of polymer-film specimens: ultrahigh molecular weight block copolymers (recently noted for their photonic activity) and isotactic polystyrene spherulites. Finally, we discuss how changes in the tip diattenuation during data collection can limit the accuracy of near-field polarimetry and what steps can be taken to improve these techniques.

© 2003 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(160.5470) Materials : Polymers
(180.5810) Microscopy : Scanning microscopy

Citation
Lori S. Goldner, Michael J. Fasolka, Sophie Nougier, Hoang-Phi Nguyen, Garnett W. Bryant, Jeeseong Hwang, Kenneth D. Weston, Kathryn L. Beers, Augustine Urbas, and Edwin L. Thomas, "Fourier Analysis Near-Field Polarimetry for Measurement of Local Optical Properties of Thin Films," Appl. Opt. 42, 3864-3881 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-19-3864


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy—image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
  2. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near-field scanning optical microscopy (NSOM)—development and biophysical applications,” Biophys. J. 49, 269–279 (1986).
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University, Princeton, N.J., 1995).
  4. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
  5. G. A. Valaskovic, M. Holton, and G. H. Morrison, “Image contrast of dielectric specimens in transmission mode near-field scanning optical microscopy—imaging properties and tip artifacts,” J. Microsc. (Oxford) 179, 29–54 (1995).
  6. L. S. Goldner, J. Hwang, G. W. Bryant, M. J. Fasolka, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, H. Shen, and P. T. Ho, “Newton’s rings in near-field optics,” Appl. Phys. Lett. 78, 583–585 (2001).
  7. H. Heinzelmann, B. Hecht, L. Novotny, and D. W. Pohl, “Forbidden light scanning near-field optical microscopy,” J. Microsc. (Oxford) 177, 115–118 (1995).
  8. L. Novotny, “Allowed and forbidden light in near-field optics. 1. A single dipolar light source,” J. Opt. Soc. Am. A 14, 91–104 (1997).
  9. L. Novotny, “Allowed and forbidden light in near-field optics. 2. Interacting dipolar particles,” J. Opt. Soc. Am. A 14, 105–113 (1997).
  10. T. Huser, L. Novotny, T. Lacoste, R. Eckert, and H. Heinzelmann, “Observation and analysis of near-field optical diffraction,” J. Opt. Soc. Am. A 16, 141–148 (1999).
  11. B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, “Influence of detection conditions on near-field optical imaging,” J. Appl. Phys. 84, 5873–5882 (1998).
  12. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
  13. M. Vaeziravani and R. Toledocrow, “Pure linear-polarization imaging in near-field scanning optical microscopy,” Appl. Phys. Lett. 63, 138–140 (1993).
  14. R. Toledocrow, J. K. Rogers, F. Seiferth, and M. Vaeziravani, “Contrast mechanisms and imaging modes in near-field optical microscopy,” Ultramicroscopy 57, 293–297 (1995).
  15. T. J. Silva and S. Schultz, “A scanning near-field optical microscope for the imaging of magnetic domains in reflection,” Rev. Sci. Instrum. 67, 715–725 (1996).
  16. A. Jalocha and N. F. van Hulst, “Polarization contrast in fluorescence scanning near-field optical reflection microscopy,” J. Opt. Soc. Am. B 12, 1577–1580 (1995).
  17. D. A. Higgins, P. J. Reid, and P. F. Barbara, “Structure and exciton dynamics in J-aggregates studied by polarization-dependent near-field scanning optical microscopy,” J. Phys. Chem. 100, 1174–1180 (1996).
  18. J. A. DeAro, K. D. Weston, S. K. Buratto, and U. Lemmer, “Mesoscale optical properties of conjugated polymers probed by near-field scanning optical microscopy,” Chem. Phys. Lett. 277, 532–538 (1997).
  19. J. A. Teetsov and D. A. Vanden Bout, “Imaging molecular and nanoscale order in conjugated polymer thin films with near-field scanning optical microscopy,” J. Am. Chem. Soc. 123, 3605–3606 (2001).
  20. J. Teetsov and D. A. Vanden Bout, “Near-field scanning optical microscopy (NSOM) study of alkyl-substituted polyfluorene films: the affect of alkyl substituent length on nanoscale polymer ordering and cluster formation,” Macromol. Symp. 167, 153–166 (2001).
  21. J. Teetsov and D. A. Vanden Bout, “Near-field scanning optical microscopy studies of nanoscale order in thermally annealed films of poly(9,9-diakylfluorene),” Langmuir 18, 897–903 (2002).
  22. D. A. Higgins, X. M. Liao, J. E. Hall, and E. W. Mei, “Simultaneous near-field optical birefringence and fluorescence contrast applied to the study of dye-doped polymer-dispersed liquid crystals,” J. Phys. Chem. B 105, 5874–5882 (2001).
  23. E. Mei and D. A. Higgins, “Nanometer-scale resolution and depth discrimination in near-field optical microscopy studies of electric-field-induced molecular reorientation dynamics,” J. Chem. Phys. 112, 7839–7847 (2000).
  24. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-field magnetooptics and high-density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
  25. H. Ade, R. ToledoCrow, M. VaezIravani, and R. J. Spontak, “Observation of polymer birefringence in near-field optical microscopy,” Langmuir 12, 231–234 (1996).
  26. D. A. Higgins, D. A. VandenBout, J. Kerimo, and P. F. Barbara, “Polarization-modulation near-field scanning optical microscopy of mesostructured materials,” J. Phys. Chem. 100, 13794–13803 (1996).
  27. T. Lacoste, T. Huser, R. Prioli, and H. Heinzelmann, “Contrast enhancement using polarization-modulation scanning near-field optical microscopy (PM-SNOM),” Ultramicroscopy 71, 333–340 (1998).
  28. T. Lacoste, T. Huser, and H. Heinzelmann, “Faraday-rotation imaging by near-field optical microscopy,” Z. Phys. B 104, 183–184 (1997).
  29. T. Huser, T. Lacoste, H. Heinzelmann, and H. S. Kitzerow, “Scanning near-field optical microscopy of cholesteric liquid crystals,” J. Chem. Phys. 108, 7876–7880 (1998).
  30. P. K. Wei and W. S. Fann, “The correlation between polarization modulated near-field optical images and the anisotropy of the probe,” J. Microsc. (Oxford) 202, 148–153 (2001).
  31. C. H. Tan, A. R. Inigo, J. H. Hsu, W. Fann, and P. K. Wei, “Mesoscale structures in luminescent conjugated polymer thin films studied by near-field scanning optical microscopy,” J. Phys. Chem. Solids 62, 1643–1654 (2001).
  32. P. K. Wei, Y. F. Lin, W. Fann, Y. Z. Lee, and S. A. Chen, “Polarization anisotropy in mesoscale domains of poly(phenylene vinylene) thin films,” Phys. Rev. B 63, 045417 (2001).
  33. T. J. Silva, S. Schultz, and D. Weller, “Scanning near-field optical microscope for the imaging of magnetic domains in optically opaque materials,” Appl. Phys. Lett. 65, 658–660 (1994).
  34. V. Kottler, N. Essaidi, N. Ronarch, C. Chappert, and Y. Chen, “Dichroic imaging of magnetic domains with a scanning near-field optical microscope,” J. Magn. Magn. Mater. 165, 398–400 (1997).
  35. P. Fumagalli, A. Rosenberger, G. Eggers, A. Munnemann, N. Held, and G. Guntherodt, “Quantitative determination of the local Kerr rotation by scanning near-field magneto-optic microscopy,” Appl. Phys. Lett. 72, 2803–2805 (1998).
  36. O. Bergossi, H. Wioland, S. Hudlet, R. Deturche, and P. Royer, “Near-field magneto-optical circular dichroism using an apertureless probe,” Jpn. J. Appl. Phys. Part 2 38, L655–L658 (1999).
  37. T. Roder, L. Paelke, N. Held, S. Vinzelberg, and H. S. Kitzerow, “Imaging of liquid crystals using a new scanning near-field optical microscope with microfabricated tips and shear force detection,” Rev. Sci. Instrum. 71, 2759–2764 (2000).
  38. L. Ramoino, M. Labardi, N. Maghelli, L. Pardi, M. Allegrini, and S. Patane, “Polarization-modulation near-field optical microscope for quantitative local dichroism mapping,” Rev. Sci. Instrum. 73, 2051–2056 (2002).
  39. E. B. McDaniel, S. C. McClain, and J. W. P. Hsu, “Nanometer scale polarimetry studies using a near-field scanning optical microscope,” Appl. Opt. 37, 84–92 (1998).
  40. M. J. Fasolka, L. S. Goldner, J. Hwang, A. M. Urbas, P. DeRege, T. Swager, and E. L. Thomas, “Measuring local optical properties: near-field polarimetry of photonic block copolymer morphology,” Phys. Rev. Lett. 90, 016107 (2003).
  41. A. Urbas, Y. Fink, and E. L. Thomas, “One-dimensionally periodic dielectric reflectors from self-assembled block copolymer-homopolymer blends,” Macromolecules 32, 4748–4750 (1999).
  42. A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
  43. F. S. Bates and G. H. Fredrickson, “Block copolymer thermodynamics—theory and experiment,” Annu. Rev. Phys. Chem. 41, 525–557 (1990).
  44. B. Wunderlich, Macromolecular Physics (Academic, New York, 1973).
  45. A. L. Campillo and J. W. P. Hsu, “Near-field scanning optical microscope studies of the anisotropic stress variations in patterned SiN membranes,” J. Appl. Phys. 91, 646–651 (2002).
  46. P. L. Frattini and G. G. Fuller, “The dynamics of dilute colloidal suspensions subject to time-dependent flow fields by conservative dichroism,” J. Colloid Interface Sci. 100, 506–518 (1984).
  47. S. J. Johnson, P. L. Frattini, and G. G. Fuller, “Simultaneous dichroism and birefringence measurements of dilute colloidal suspensions in transient shear flow,” J. Colloid Interface Sci. 104, 440–455 (1985).
  48. M. Born and E. Wolf, Principles of Optics, 4th ed.(Pergamon, New York, 1970), p. 711.
  49. S. Y. Lu and R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11, 766–773 (1994).
  50. G. E. Jellison and F. A. Modine, “Two-modulator generalized ellipsometry: experiment and calibration,” Appl. Opt. 36, 8184–8189 (1997).
  51. G. E. Jellison and F. A. Modine, “Two-modulator generalized ellipsometry: theory,” Appl. Opt. 36, 8190–8198 (1997).
  52. D. W. Pohl, “Scanning near-field optical microscopy (SNOM),” Adv. Opt. Electron Microsc. 12, 243–311 (1991).
  53. E. Betzig and J. K. Trautman, “Near-field optics—microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
  54. R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891–2928 (1999).
  55. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier—optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
  56. E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
  57. M. J. Fasolka and A. M. Mayes, “Block copolymer thin films: physics and applications,” Annu. Rev. Mater. Res. 31, 323–355 (2001).
  58. Y. Fink, A. M. Urbas, M. G. Bawendi, J. D. Joannopoulos, and E. L. Thomas, “Block copolymers as photonic bandgap materials,” J. Lightwave Technol. 17, 1963–1969 (1999).
  59. E. L. Thomas and R. L. Lescanec, “Phase morphology in block-copolymer systems,” Philos. Trans. R. Soc. London Ser. A 348, 149–166 (1994).
  60. A. Urbas, R. Sharp, Y. Fink, E. L. Thomas, M. Xenidou, and L. J. Fetters, “Tunable block copolymer/homopolymer photonic crystals,” Adv. Mater. 12, 812–814 (2000).
  61. R. J. Albalak and E. L. Thomas, “Roll-casting of block-copolymers and of block copolymer-homopolymer blends,” J. Polym. Sci. Part B Polym. Phys. 32, 341–350 (1994).
  62. A. L. Campillo, J. W. P. Hsu, and G. W. Bryant, “Local imaging of photonic structures: image contrast from impedance mismatch,” Opt. Lett. 27, 415–417 (2002).
  63. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
  64. C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).
  65. C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep. 5, 321–332 (1950).
  66. G. W. Bryant, E. L. Shirley, L. S. Goldner, E. B. McDaniel, J. W. P. Hsu, and R. J. Tonucci, “Theory of probing a photonic crystal with transmission near-field optical microscopy,” Phys. Rev. B 58, 2131–2141 (1998).
  67. L. J. Richter, C. E. Jordan, R. R. Cavanagh, G. W. Bryant, A. S. Liu, S. J. Stranick, C. D. Keating, and M. J. Natan, “Influence of secondary tip shape on illumination-mode near-field scanning optical microscopy images,” J. Opt. Soc. Am. A 16, 1936–1946 (1999).
  68. A. S. Vaughan, “The morphology of semi-crystalline polymers,” Sci. Prog. (London) 76, 1–65 (1992).
  69. K. Izumi, G. Ping, M. Hashimoto, A. Toda, H. Miyaji, Y. Miyamoto, and Y. Nakagawa, “Crystal growth of polymers in thin films,” in Advances in Understanding of Crystal Growth Mechanisms, T. Nishinaga, K. Nishioka, J. Harada, A. Sasaki, and H. Takei, eds. (Elsevier Science, Amsterdam, 1997), pp. 337–348.
  70. R. L. Jones, S. K. Kumar, D. L. Ho, R. M. Briber, and T. P. Russell, “Chain conformation in ultrathin polymer films using small-angle neutron scattering,” Macromolecules 34, 559–567 (2001).
  71. O. Mellbring, S. K. Oiseth, A. Krozer, J. Lausmaa, and T. Hjertberg, “Spin coating and characterization of thin high-density polyethylene films,” Macromolecules 34, 7496–7503 (2001).
  72. G. Reiter, “Mobility of polymers in films thinner than their unperturbed size,” Europhys. Lett. 23, 579–584 (1993).
  73. G. Reiter and J.-U. Sommer, “Polymer crystallization in quasi-two dimensions. I. Experimental results,” J. Chem. Phys. 112, 4376–4383 (2000).
  74. Y. Sakai, M. Imai, K. Kaji, and M. Tsuji, “Tip-splitting crystal growth observed in crystallization from thin films of poly(ethylene terephthalate),” J. Cryst. Growth 203, 244–254 (1999).
  75. S. Sawamura, H. Miyaji, K. Izumi, S. I. Sutton, and Y. Miyamoto, “Growth rate of isotactic polystyrene crystals in thin films,” J. Phys. Soc. Jpn. 67, 3338–3344 (1998).
  76. J. C. Meredith, A. P. Smith, A. Karim, and E. J. Amis, “Combinatorial materials science for polymer thin-film dewetting,” Macromolecules 33, 9747–9756 (2000).
  77. P. Török, P. D. Higdon, and T. Wilson, “On the general properties of polarized light conventional and confocal microscopes,” Opt. Commun. 148, 300–315 (1998).
  78. W. Noell, M. Abraham, K. Mayr, A. Ruf, J. Barenz, O. Hollricher, O. Marti, and P. Guthner, “Micromachined aperture probe tip for multifunctional scanning probe microscopy,” Appl. Phys. Lett. 70, 1236–1238 (1997).
  79. S. Werner, O. Rudow, C. Mihalcea, and E. Oesterschulze, “Cantilever probes with aperture tips for polarization-sensitive scanning near-field optical microscopy,” Appl. Phys. A 66, S367–S370 (1998).
  80. P. N. Minh, T. Ono, S. Tanaka, and M. Esashi, “Spatial distribution and polarization dependence of the optical near-field in a silicon microfabricated probe,” J. Microsc. (Oxford) 202, 28–33 (2001).
  81. R. M. A. Azzam, “Photopolarimetric measurement of Mueller matrix by Fourier—analysis of a single detected signal,” Opt. Lett. 2, 148–150 (1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited