OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 19 — Jul. 1, 2003
  • pp: 3888–3895

Wavelength-scanning interferometry of a transparent parallel plate with refractive-index dispersion

Kenichi Hibino, Bozenko F. Oreb, and Philip S. Fairman  »View Author Affiliations

Applied Optics, Vol. 42, Issue 19, pp. 3888-3895 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (436 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Testing for flatness of an optical parallel plate in a Fizeau interferometer suffers from problems caused by multiple-beam interference noise. Each internal-reflection component can be separated from the signal by its modulation frequency in a wavelength-scanned interferometer; however, the frequency depends on the thickness and the refractive-index dispersion of the test plate and on the nonlinearity of the scanning source. With a new 19-sample wavelength-scanning algorithm we demonstrate the elimination of the reflection noise, the effect of the dispersion up to the second order of the reflectance of the test plate, and as the nonlinearity of the source. The algorithm permits large tolerance in the air-gap distance, thus making it somewhat independent of the thickness of the test plate. The minimum residual reflection noise with this algorithm for testing a glass plate is ∼λ/600. Experimental results show that the front surface of the test plate was measured within 1 nm rms of its true shape over a 230-mm-diameter aperture.

© 2003 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry

Original Manuscript: July 4, 2002
Revised Manuscript: December 2, 2002
Published: July 1, 2003

Kenichi Hibino, Bozenko F. Oreb, and Philip S. Fairman, "Wavelength-scanning interferometry of a transparent parallel plate with refractive-index dispersion," Appl. Opt. 42, 3888-3895 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. V. Mantravadi, “Testing nearly parallel plates,” in Optical Shop Testing, D. Malacara, ed. (Wiley, New York, 1992), p. 22.
  2. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983). [CrossRef]
  3. C. Ai, J. C. Wyant, “Testing an optical window of a small wedge angle: effect of multiple reflections,” Appl. Opt. 32, 4904–4912 (1993). [CrossRef] [PubMed]
  4. J. Wingerden, H. J. Frankena, C. Smorenburg, “Linear approximation for measurement errors in phase shifting interferometry,” Appl. Opt. 30, 2718–2729 (1991). [CrossRef] [PubMed]
  5. F. Lexer, C. K. Hitzenberger, A. F. Fercher, M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36, 6548–6552 (1997). [CrossRef]
  6. H. Hiratsuka, E. Kido, T. Yoshimura, “Simultaneous measurements of three-dimensional reflectivity distributions in scattering media based on optical frequency-domain reflectometry,” Opt. Lett. 23, 1420–1422 (1998). [CrossRef]
  7. K. Okada, H. Sakuta, T. Ose, J. Tsujiuchi, “Separate measurements of surface shapes and refractive index inhomogeneity of an optical element using tunable-source phase shifting interferometry,” Appl. Opt. 29, 3280–3285 (1990). [CrossRef] [PubMed]
  8. P. J. de Groot, “Measurement of transparent plates with wavelength-tuned phase-shifting interferometry,” Appl. Opt. 39, 2658–2663 (2000). [CrossRef]
  9. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef] [PubMed]
  10. K. A. Stetson, W. R. Brohinsky, “Electro-optic holography and its application to hologram interferometry,” Appl. Opt. 24, 3631–3637 (1985). [CrossRef]
  11. K. G. Larkin, B. F. Oreb, “Design and assessment of symmetrical phase-shifting algorithms,” J. Opt. Soc. Am. A 9, 1740–1748 (1992). [CrossRef]
  12. L. L. Deck, “Multiple surface phase shifting interferometry,” in Optical Manufacturing and Testing IV, International Symposium on Optical Science, Engineering and Instrumentation, H. P. Stahl, ed., Proc. SPIE4451, 424–431 (2001). [CrossRef]
  13. Y. Ishii, J. Chen, K. Murata, “Digital phase-measuring interferometry with a tunable laser diode,” Opt. Lett. 12, 233–235 (1987). [CrossRef] [PubMed]
  14. K. Hibino, “Error-compensating phase measuring algorithms in a phase shifting Fizeau interferometer,” Opt. Rev. 6, 529–538 (1999). [CrossRef]
  15. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed., (North-Holland, Amsterdam, 1988), Vol. 26, pp. 349–393. [CrossRef]
  16. K. Hibino, B. F. Oreb, D. I. Farrant, K. G. Larkin, “Phase shifting for nonsinusoidal waveforms with phase-shift errors,” J. Opt. Soc. Am. A 12, 761–768 (1995). [CrossRef]
  17. K. Hibino, B. F. Oreb, D. I. Farrant, K. G. Larkin, “Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts,” J. Opt. Soc. Am. A 14, 918–930 (1997). [CrossRef]
  18. P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, C. J. Walsh, “300-mm-aperture phase-shifting Fizeau interferometer,” Opt. Eng. 38, 1371–1380 (1999). [CrossRef]
  19. B. F. Oreb, D. I. Farrant, C. J. Walsh, G. Forbes, P. S. Fairman, “Calibration of a 300-mm-aperture phase-shifting Fizeau interferometer,” Appl. Opt. 39, 5161–5171 (2000). [CrossRef]
  20. K. Hibino, T. Takatsuji, “Suppression of multiple-beam interference noise in testing an optical parallel plate by wavelength-scanning interferometry,” Opt. Rev. 9, 60–65 (2002). [CrossRef]
  21. K. Hibino, K. G. Larkin, B. F. Oreb, D. I. Farrant, “Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts: reply to comment,” J. Opt. Soc. Am. A 15, 1234–1235 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited