OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 19 — Jul. 1, 2003
  • pp: 3915–3926

Influence of a glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers

Erik Fällman and Ove Axner  »View Author Affiliations

Applied Optics, Vol. 42, Issue 19, pp. 3915-3926 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (314 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A systematic study of the influence of a glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers is presented. The ways in which the escape force and the trapping position, as well as the stiffness of the trap, depend on the focusing depth, the numerical aperture, and the degree of overfilling of the objective entrance pupil are investigated. It is concluded, among other things, that objectives with the highest numerical aperture and the use of large degrees of overfilling do not always provide the optimum trapping conditions at finite depths.

© 2003 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(080.2710) Geometric optics : Inhomogeneous optical media
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.7010) Lasers and laser optics : Laser trapping
(180.0180) Microscopy : Microscopy

Original Manuscript: June 10, 2002
Revised Manuscript: February 6, 2003
Published: July 1, 2003

Erik Fällman and Ove Axner, "Influence of a glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers," Appl. Opt. 42, 3915-3926 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]
  3. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. USA 94, 4853–4860 (1997). [CrossRef] [PubMed]
  4. M. P. Sheetz, Laser Tweezers in Cell Biology (Academic, New York, 1998).
  5. K. Svoboda, S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994). [CrossRef] [PubMed]
  6. A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348, 346–348 (1990). [CrossRef] [PubMed]
  7. L. P. Ghislain, N. A. Switz, W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762–2768 (1994). [CrossRef]
  8. K. Svoboda, S. M. Block, “Force and velocity measured for single kinesin molecules,” Cell 77, 773–784 (1994). [CrossRef] [PubMed]
  9. J. T. Finer, R. M. Simmons, J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994). [CrossRef] [PubMed]
  10. J. E. Molloy, J. E. Burns, J. Kendrick-Jones, R. T. Tregear, D. C. S. White, “Movement and force produced by a single myosin head,” Nature 378, 209–212 (1995). [CrossRef] [PubMed]
  11. R. M. Simmons, J. T. Finer, S. Chu, J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70, 1813–1822 (1996). [CrossRef] [PubMed]
  12. K. Visscher, S. P. Gross, S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron. 2, 1066–1076 (1996). [CrossRef]
  13. M. Mammen, K. Helmerson, R. Kishore, S. K. Choi, W. D. Phillips, G. M. Whitesides, “Optically controlled collisions of biological objects to evaluate potent polyvalent inhibitors of virus-cell adhesion,” Chem. Biol. 3, 757–763 (1996). [CrossRef] [PubMed]
  14. M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, C. Bustamante, “Folding-unfolding transitions in single titin molecules characterized with laser tweezers,” Science 276, 1122–1116 (1997). [CrossRef]
  15. Z.-P. Luo, K.-N. An, “Development and validation of a nanometer manipulation and measurement system for biomechanical testing of single macro-molecules,” J. Biomechan. 31, 1075–1079 (1998). [CrossRef]
  16. M. D. Wang, M. J. Schnitzer, Y. Hong, L. Robert, G. Jeff, S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282, 902–907 (1998). [CrossRef] [PubMed]
  17. M. N. Liang, S. P. Schmith, S. J. Metallo, I. S. Choi, M. Prentiss, G. M. Whitesides, “Measuring the forces involved in polyvalent adhesion of urophatogenic Escherichia coli to mannose-presenting surfaces,” Proc. Natl. Acad. Sci. USA 97, 13,092–13,096 (2000). [CrossRef]
  18. R. B. Dickinson, A. R. Clapp, S. E. Truesdail, “Direct measurement of long-range interaction forces between a single bacterium and a substrate using an optical trap,” in Handbook of Bacterial Adhesion, R. J. Friedman, ed. (Humana Press, Totowa, N.J., 2000), pp. 297–306. [CrossRef]
  19. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef] [PubMed]
  20. R. Gussgard, T. Lindmo, I. Brevik, “Calculation of the traping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1922–1930 (1992). [CrossRef]
  21. T. C. B. Schut, G. Hesselink, B. G. Degrooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometrical-optics model for calculating the stability of optical traps,” Cytometry 16, 479–485 (1991). [CrossRef]
  22. W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993). [CrossRef]
  23. W. H. Wright, G. J. Sonek, M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994). [CrossRef] [PubMed]
  24. M. Gu, P. C. Ke, X. S. Gan, “Trapping force by a high numerical-aperture microscope objective obeying the sine condition,” Rev. Sci. Instrum. 68, 3666–3668 (1997). [CrossRef]
  25. S. Nemoto, H. Togo, “Axial force acting on a dielectric sphere in a focused laser beam,” Appl. Opt. 37, 6386–6394 (1998). [CrossRef]
  26. P. C. Ke, M. Gu, “Characterization of trapping force on metallic Mie particles,” Appl. Opt. 38, 160–167 (1999). [CrossRef]
  27. R. C. Gauthier, A. Frangioudakis, “Theoretical investigation of the optical trapping properties of a micro-optic cubic glass structure,” Appl. Opt. 39, 3060–3070 (2000). [CrossRef]
  28. P. C. Ke, M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159–2168 (1998). [CrossRef]
  29. T. Tlusty, A. Meller, B.-Z. Roy, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738–1741 (1998). [CrossRef]
  30. P. A. Maia Neto, H. M. Nussenzveig, “Theory of optical tweezers,” Europhys. Lett. 50, 702–708 (2000). [CrossRef]
  31. D. A. White, “Vector finite element modeling of optical tweezers,” Comput. Phys. Commun. 128, 558–564 (2000). [CrossRef]
  32. Traditional aberration theory shows that spherical aberration is strongly dependent on the NA of an optical system. The longitudinal (also referred to as the axial) spherical aberration is proportional to NA2; whereas the spherical wave aberration is proportional to NA4. Optical tweezers, which utilize high-NA objectives to produce rays with large angles, are therefore particularly susceptible to this effect.
  33. There are also objectives that have provisions for adjustment of the spherical-aberration-free depth. However, such objectives are often costly and complicated and are therefore not common for optical tweezers applications. In addition, they contain a significant number of lenses, which also makes them less suitable for optical trapping.
  34. A. Rohrbach, E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectrical spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494–2507 (2002). [CrossRef] [PubMed]
  35. X. C. Yao, Z. L. Li, H. L. Guo, B. Y. Cheng, X. H. Han, D. Z. Zhang, “Effect of spherical aberration introduced by water solution on trapping force,” Chin. Phys. 9, 824–826 (2000). [CrossRef]
  36. E. Fällman, O. Axner are preparing the following paper for publication: “Comparison of on-axis trapping of optical traps under the influence of spherical aberration by objectives that adhere to the sin and tan conditions.”
  37. E. Fällman, O. Axner are preparing the following paper for publication: “The influence of a cover glass surface on the trapping of spherical objects by optical tweezers—The off-axis case.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited