OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 19 — Jul. 1, 2003
  • pp: 4016–4022

Global Rainbow Thermometry Assessed by Airy and Lorenz-Mie Theories and Compared with Phase Doppler Anemometry

Jeronimus Petrus Antonius Johannes van Beeck, Thomas Grosges, and Maria Grazia De Giorgi  »View Author Affiliations


Applied Optics, Vol. 42, Issue 19, pp. 4016-4022 (2003)
http://dx.doi.org/10.1364/AO.42.004016


View Full Text Article

Acrobat PDF (817 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Global rainbow thermometry (GRT) measures the mean size and temperature of an ensemble of spray droplets. The domain of validity of the Airy theory for this technique is established through comparison with Lorenz-Mie theory. The temperature derivation from the inflection points of the Airy rainbow pattern appears to be independent of the type of spray dispersion. Measurements in a water spray are reported. The mean diameter obtained from the rainbow pattern lies between the arithmetic and the Sauter mean diameters measured by phase Doppler anemometry. The temperature measurement by GRT is shown to be accurate within a few degrees Celsius.

© 2003 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(120.6780) Instrumentation, measurement, and metrology : Temperature
(290.0290) Scattering : Scattering

Citation
Jeronimus Petrus Antonius Johannes van Beeck, Thomas Grosges, and Maria Grazia De Giorgi, "Global Rainbow Thermometry Assessed by Airy and Lorenz-Mie Theories and Compared with Phase Doppler Anemometry," Appl. Opt. 42, 4016-4022 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-19-4016


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. N. Roth, K. Anders, and A. Frohn, “Simultaneous measurement of temperature and size of droplets in the micrometer range,” in 7th International Congress on Optical Methods in Flow and Particle Diagnostics (Sunnyvale, Calif., 1988), pp. 294–304.
  2. S. V. Sankar, K. H. Ibrahim, D. H. Buermann, M. J. Fidrich, and W. D. Bachalo, “An integrated phase Doppler/rainbow refractometer system for simultaneous measurement of droplet size, velocity and refractive index,” in 3rd International Congress on Optical Particle Sizing (Yokohama, Japan, 1993), pp. 275–284.
  3. J. P. A. J. van Beeck and M. L. Riethmuller, “Simultaneous determination of temperature and size of droplets from rainbow using Airy theory,” in Developments in Laser Techniques and Applications to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, and J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1994), pp. 330–339.
  4. S. V. Sankar, D. H. Buermann, and W. D. Bachalo, “An advanced rainbow signal processor for improved accuracy in droplet temperature measurement,” in 8th International Symposium on Applications of Laser Techniques to Fluid Mechanics (Instituto Superior Technico, Lisbon, Portugal, 1996), Vol. 1, pp. 9.3.1–9.3.9.
  5. P. Massoli, “Rainbow refractometry applied to radially inhomogeneous spheres: the critical case of evaporating droplets,” Appl. Opt. 37, 3227–3234 (1998).
  6. K. Anders, N. Roth, and F. Frohn, “Theoretical and experimental studies of the influence of internal temperature gradients on rainbow refractometry,” in 4th International Congress on Optical Particle Sizing (Nuremberg, Germany, 1995), pp. 419–428.
  7. F. Corbin, A. Garo, G. Gouesbet, and G. Grehan, “Réfractomètrie d’arc-en-ciel: application au diagnostic des gouttes avec gradient d’indice,” in Receuil des Actes du 5eme Congrès Francophone de Vélocimétrie Laser (Université et Institut National des Sciences Appliquées of Rouen, Rouen, France, 1996), pp. E1.1–E1.8.
  8. J. P. A. J. van Beeck and M. L. Riethmuller, “Nonintrusive measurements of temperature and size of single falling raindrops,” Appl. Opt. 34, 1633–1639 (1995).
  9. J. P. A. J. van Beeck and M. L. Riethmuller, “Rainbow phenomena applied to the measurement of droplet size and velocity and to the detection of nonsphericity,” Appl. Opt. 35, 2259–2266 (1996).
  10. J. P. A. J. van Beeck, D. Giannoulis, L. Zimmer, and M. L. Riethmuller, “Global rainbow thermometry for droplet-temperature measurement,” Opt. Lett. 24, 1696–1698 (1999).
  11. N. Roth, K. Anders, and A. Frohn, “Refractive-index measurements for the correction of particle sizing and methods,” Appl. Opt. 30, 4960–4965 (1991).
  12. N. Roth, K. Anders, and A. Frohn, “Simultaneous determination of refractive index and droplet size using Mie theory,” in 6th International Symposium on Applications of Laser Techniques to Fluid Mechanics (Instituto Superior Technico, Lisbon, Portugal, 1992), pp. 15.5.1–15.5.5.
  13. J. P. A. J. van Beeck, “Rainbow phenomena: development of a laser-based, non-intrusive technique for measuring droplet size, temperature and velocity,” Ph.D. dissertation (Eindhoven University of Technology, Eindhoven, The Netherlands, 1997).
  14. H. C. van de Hulst, Light scattering by small particles (Dover, New York, 1981), pp. 243–246.
  15. G. Gouesbet and G. Gréhan, “Generalized Lorenz-Mie theory for assemblies of spheres and aggregates,” J. Opt. A 1, 706–712 (1999).
  16. X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of initial disturbances in liquid jet by rainbow sizing,” Appl. Opt. 37, 8482–8503 (1998).
  17. R. T. Wang and H. C. van de Hulst, “Rainbows: Mie computations and the Airy approximation,” Appl. Opt. 30, 106–116 (1991).
  18. R. L. Lee, Jr., “Mie theory, Airy theory, and the natural rainbow,” Appl. Opt. 37, 1506–1519 (1998).
  19. J. P. A. J. van Beeck, L. Zimmer, and M. L. Riethmuller, “Global rainbow thermometry for mean temperature and size measurement of spray droplets,” Part. Part. Syst. Charact. 18, 196–204 (2001).
  20. N. Roth, K. Anders, and A. Frohn, “Size intensitive rainbow refractometry: theoretical aspects,” in 8th International Symposium on Applications of Laser Techniques to Fluid Mechanics (Instituto Superior Technico, Lisbon, Portugal, 1996), Vol. 1, pp. 9.2.1–9.2.6.
  21. C. Tropea, “Developments of specialized phase-Doppler techniques and refractive index measurements,” in Lecture Series on Optical Diagnostics of Particles and Droplets, M. L. Riethmuller and J. P. A. J. van Beeck, eds. (Von Karman Institute, Sint-Genesius-Rhode, Belgium, 1999), pp. 1–29.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited