OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 19 — Jul. 1, 2003
  • pp: 4072–4079

Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems

Klaus B. Mogensen, Jamil El-Ali, Anders Wolff, and Jörg P. Kutter  »View Author Affiliations

Applied Optics, Vol. 42, Issue 19, pp. 4072-4079 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multimode polymer waveguides and fiber-to-waveguide couplers have been integrated with microfluidic channels by use of a single-mask-step procedure, which ensured self-alignment between the optics and the fluidics and allowed a fabrication and packaging time of only one day. Three fabrication procedures for obtaining hermetically sealed channels were investigated, and the spectrally resolved propagation loss (400–900 nm) of the integrated waveguides was determined for all three procedures. Two chemical absorbance cells with optical path lengths of 100 and 1000 μm were furthermore fabricated and characterized in terms of coupling loss, sensitivity, and limit of detection for measurements of the dye bromothymol blue.

© 2003 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

Original Manuscript: October 23, 2002
Revised Manuscript: February 12, 2003
Published: July 1, 2003

Klaus B. Mogensen, Jamil El-Ali, Anders Wolff, and Jörg P. Kutter, "Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems," Appl. Opt. 42, 4072-4079 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. D. Reyes, D. Iossifidis, P. A. Auroux, A. Manz, “Micro total analysis systems. 1. Introduction, theory, and technology,” Anal. Chem. 74, 2623–2636 (2002). [CrossRef] [PubMed]
  2. P. A. Auroux, D. R. Reyes, D. Iossifidis, A. Manz, “Micro total analysis systems. 2. Analytical standard operations and applications,” Anal. Chem. 74, 2637–2652 (2002). [CrossRef] [PubMed]
  3. D. Sobek, S. D. Senturia, M. K. Gray, “Microfabricated fused silica flow chambers for flow cytometry,” in Proceedings of the Solid-State Sensor and Actuator Workshop (Transducer Research Foundation, Cleveland, Ohio, 1994), pp. 260–263.
  4. Z. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, D. J. Harrison, “Microfabrication of planar absorbance and fluorescence cell for integrated capillary electrophoresis devices,” Anal. Chem. 68, 1040–1046 (1996). [CrossRef]
  5. L. Cui, T. Zhang, H. Morgan, “Optical particle detection integrated in a dielectrophoretic lab-on-a-chip,” J. Micromech. Microeng. 12, 7–12 (2002). [CrossRef]
  6. J. M. Ruano, V. Benoit, J. S. Aitchison, J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for the integration of optical and microfluidic devices,” Anal. Chem. 72, 1093–1097 (2000). [CrossRef] [PubMed]
  7. G. Pandraud, T. M. Koster, C. Gui, M. Dijkstra, A. van den Berg, P. V. Lambeck,”Evanescent wave sensing: new features for detection in small volumes,” Sens. Actuators A 85, 158–162 (2000). [CrossRef]
  8. K. B. Mogensen, N. J. Petersen, J. Hübner, J. P. Kutter, “Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices,” Electrophoresis 22, 3930–3938 (2001). [CrossRef] [PubMed]
  9. J. N. McMullin, “Laser fabrication of integrated microfluidic/micro-optic systems,” in Applications of Photonic Technology 4, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE4087, 1050–1055 (2000). [CrossRef]
  10. G. B. Lee, C. H. Lin, G. L. Chang, “Multi-cell-line micro flow cytometers with buried SU-8/SOG optical waveguides,” in Proceedings of the Fifteenth Annual IEEE International Microelectromechanical Systems 2002 Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 503–506.
  11. R. B. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263–269 (2001). [CrossRef]
  12. J. Zhang, K. L. Tan, G. D. Hong, L. J. Yang, H. Q. Gong, “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS,” J. Micromech. Microeng. 11, 20–26 (2001). [CrossRef]
  13. Y. Wakamoto, I. Inoue, H. Moriguchi, K. Yasuda, “Analysis of single-cell differences by use of an on-chip microculture system and optical trapping,” Fresenius J. Anal. Chem. 371, 276–281 (2001). [CrossRef] [PubMed]
  14. M. Despont, H. Lorenz, N. Fahrni, J. Brugger, P. Renaud, P. Vettiger, “High-aspect ratio, ultrathick, negative-tone near-UV photoresist for MEMS applications,” in Proceedings of the Tenth Annual IEEE International Microelectromechanical Systems 1997 Conference (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 518–522.
  15. Z. G. Ling, K. Lian, L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” in Advances in Resist Technology and Processing XVII, F. M. Houlihan, ed., Proc. SPIE3999, 1019–1027 (2000). [CrossRef]
  16. J. P. Kutter, “Recent developments in electrophoretic and chromatographic separation methods on microfabricated devices,” Trends Anal. Chem. 19, 352–363 (2000). [CrossRef]
  17. E. Verpoorte, “Microfluidic chips for clinical and forensic analysis,” Electrophoresis 23, 677–712 (2002). [CrossRef] [PubMed]
  18. M. E. Foquet, J. Han, W. Wright, H. G. Craighead, “Fabrication of microcapillaries and waveguides for single molecule detection,” in Micro- and Nanofabricated Structures and Devices for Biomedical Environmental Applications, P. L. Gourley, ed., Proc. SPIE3258, 141–147 (1998). [CrossRef]
  19. P. Friis, K. Hoppe, O. Leistiko, A. Wolff, P. Telleman, “Integrated optics for bio/chemical microsystems,” in Proceedings of Eurosensors XIII (The Hague, The Netherlands, 1999), pp. 287–288.
  20. P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hübner, J. P. Kutter, “Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,” Appl. Opt. 40, 6246–6251 (2001). [CrossRef]
  21. K. B. Mogensen, P. Friis, J. Hübner, N. J. Petersen, A. M. Jorgensen, P. Telleman, J. P. Kutter, “Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems,” Opt. Lett. 26, 716–718 (2001). [CrossRef]
  22. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1991), Chaps. 5 and 9.
  23. L. Eldada, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, C. Xu, C. Wu, J. Yardley, “Advanced polymer systems for optoelectronic integrated circuit applications,” in Optoelectronic Integrated Circuits, Y. S. Park, R. V. Ramaswamy, eds., Proc. SPIE3006, 344–361 (1997). [CrossRef]
  24. H. Klank, J. P. Kutter, O. Geschke, “CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab on a Chip, 2, 242–246 (2002). [CrossRef]
  25. P. D. Curtis, S. Lezekiel, R. E. Miles, C. R. Pescod, “SU-8 as a material for integrated all-optical microwave filters,” Microwave Eng., April2001, pp. 51–56.
  26. L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000). [CrossRef]
  27. D. A. Skoog, D. M. West, F. J. Holler, Fundamentals of Analytical Chemistry (Saunders College Publishing, New York, 1997).
  28. H. Salimi-Moosavi, Y. Jiang, L. Lester, G. McKinnon, D. J. Harrison, “A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices,” Electrophoresis 21, 1291–1299 (2000). [CrossRef] [PubMed]
  29. R. M. Tiggelaar, T. T. Veenstra, R. G. P. Sanders, J. G. E. Gardeniers, M. C. Elwenspoek, A. van den Berg, “A light detection cell to be used in a micro analysis system for ammonia,” Talanta 56, 331–339 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited