OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 19 — Jul. 1, 2003
  • pp: 4080–4087

Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation

Alexandra Alimova, Alvin Katz, Howard E. Savage, Mahendra Shah, Glenn Minko, Daniel V. Will, Richard B. Rosen, Steven A. McCormick, and Robert R. Alfano  »View Author Affiliations

Applied Optics, Vol. 42, Issue 19, pp. 4080-4087 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (185 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorescence emission and excitation spectra were measured over a 7-day period for Bacillus subtilis (Bs), a spore-forming, and Staphylococcus aureus (Sa), a nonspore-forming bacteria subjected to conditions of starvation. Initially, the Bs fluorescence was predominantly due to the amino acid tryptophan. Later, a fluorescence band with an emission peak at 410 nm and excitation peak at 345 nm, from dipicolinic acid, appeared. Dipicolinic acid is produced during spore formation and serves as a spectral signature for detection of spores. The intensity of the 410-nm band continued to increase over the next 3 days. The Sa fluorescence was predominantly from tryptophan and did not change over time. In 6 of the 17 Bs specimens studied, an additional band appeared with a weak emission peak at 460 nm and excitation peaks at 250, 270, and 400 nm. The addition of β-hydroxybutyric acid to the Bs or the Sa cultures resulted in a two-order of magnitude increase in the 460-nm emission. The addition of Fe2+ quenched the 460 emission, indicating that a source of the 460-nm emission was a siderophore produced by the bacteria. We demonstrate that optical spectroscopy-based instrumentation can detect bacterial spores in real time.

© 2003 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

Original Manuscript: October 30, 2002
Revised Manuscript: March 6, 2003
Published: July 1, 2003

Alexandra Alimova, Alvin Katz, Howard E. Savage, Mahendra Shah, Glenn Minko, Daniel V. Will, Richard B. Rosen, Steven A. McCormick, and Robert R. Alfano, "Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation," Appl. Opt. 42, 4080-4087 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. C. Tang, Y. L. Yang, Z. Z. Huang, F. Zhou, S. Cosloy, R. R. Alfano, “Spectroscopic properties of tryptophan and bacteria,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases II, R. R. Alfano, ed., Proc. SPIE2387, 169–172 (1995). [CrossRef]
  2. R. A. Dalterio, W. H. Nelson, D. Britt, J. Sperry, D. Psaras, J. F. Tanguay, S. L. Suib, “Steady-state and decay characteristics of protein tryptophan fluorescence from bacteria,” Appl. Spectrosc. 40, 86–90 (1986). [CrossRef]
  3. R. A. Dalterio, W. H. Nelson, D. Britt, J. F. Sperry, “The steady-state and decay characteristics of primary fluoresence from live bacteria,” Appl. Spectrosc. 41, 234–241 (1987). [CrossRef]
  4. J. A. Werkhaven, L. Reinisch, M. Sorrell, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104(3 Pt 1), 264–268 (1994).
  5. M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994). [CrossRef] [PubMed]
  6. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol. Sci. Technol. 30, 174–185 (1999). [CrossRef]
  7. A. Driks, “Overview: development in bacteria: spore formation in Bacillus subtilis,” Cell Mol. Life Sci. 59, 389–391 (2002). [CrossRef] [PubMed]
  8. W. L. Nicholson, “Roles of Bacillus endospores in the environment,” Cell Mol. Life Sci. 59, 410–416 (2002). [CrossRef] [PubMed]
  9. A. Moir, B. M. Corfe, J. Behravan, “Spore germination,” Cell Mol. Life Sci. 59, 403–409 (2002). [CrossRef] [PubMed]
  10. M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinic acid,” J. Bacteriol. 182, 5505–5512 (2000). [CrossRef] [PubMed]
  11. B. Setlow, E. Melly, P. Setlow, “Properties of spores of Bacillus subtilis blocked at an intermediate stage in spore germination,” J. Bacteriol. 183, 4894–4899 (2001). [CrossRef] [PubMed]
  12. T. A. Slieman, W. L. Nicholson, “Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation,” Appl. Environ. Microbiol. 67, 1274–1279 (2001). [CrossRef] [PubMed]
  13. M. Frobisher, R. D. Hinsdill, K. T. Crabtree, C. R. Goodheart, Fundamentals of Microbiology, 9th ed. (W. B. Saunders, Philadelphia, 1974).
  14. A. D. Wrath, “Determination of dipicolinic acid in bacterial spores by derviative spectroscopy,” Anal. Biochem. 130, 502–505 (1983). [CrossRef]
  15. R. Nudelman, B. V. Bronk, S. Efrima, “Fluorescence emission derived from dipicolonic acid, its sodium and calcium salts,” Appl. Spectrosc. 54, 445–449 (2000). [CrossRef]
  16. T. D. Barela, A. D. Sherry, “A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium,” Anal. Biochem. 71, 351–357 (1976). [CrossRef] [PubMed]
  17. L. E. Sacks, “Chemical germination of native and cation-exchanged bacterial spores with trifluoperazine,” Appl. Environ. Microbiol. 56, 1185–1187 (1990). [PubMed]
  18. D. L. Rosen, C. Sharpless, L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082–1085 (1997). [CrossRef]
  19. P. M. Pellegrino, N. F. Fell, D. L. Rosen, J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755–1760 (1997). [CrossRef]
  20. D. L. Rosen, “Wavelength pair selection for bacterial enodspore detection by use of terbium dipicolinate photoluminescence,” Appl. Opt. 37, 805–807 (1998). [CrossRef]
  21. A. A. Hindle, E. A. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst 124, 1599–1604 (1999). [CrossRef]
  22. N. F. Fell, P. M. Pellegrino, J. B. Gillespie, “Mitigating phosphate interference in bacterial endospore detection by Tb dipicolinate photoluminescence,” Anal. Chim. Acta 426, 43–50 (2001). [CrossRef]
  23. A. Katz, H. E. Savage, S. P. Schantz, S. A. McCormick, R. R. Alfano, “Noninvasive native fluorescence imaging of head and neck tumors,” Technology in Cancer Research and Treatment 1, 9–16 (2002).
  24. A. J. Anderson, G. W. Haywood, E. A. Dawes, “Biosynthesis and composition of bacterial poly(hydroxyalkanoates),” Int. J. Biol. Macromol. 12, 102–105 (1990). [CrossRef] [PubMed]
  25. J. R. Telford, K. N. Raymond, “Amonabactin: a family of novel siderophores from a pathogenic bacterum,” J. Biol. Inorg. Chem. 2, 750–761 (1997). [CrossRef]
  26. I. Weinryb, R. F. Steiner, “The luminescence of the aromatic amino acids,” in Excited States of Proteins and Nucleic Acids, I. Weinryb, R. F. Steiner, eds. (Plenum, New York, 1971), pp. 277–319. [CrossRef]
  27. M. O. Clements, S. J. Foster, “Starvation recovery of Staphylococcus aureus 8325-4,” Microbiology 144(Pt 7), 1755–1763 (1998). [CrossRef]
  28. S. P. Watson, M. Antonio, S. J. Foster, “Isolation and characterization of Staphylococcus aureus starvation-induced, stationary-phase mutants defective in survival or recovery,” Microbiology 144(Pt 11), 3159–3169 (1998). [CrossRef]
  29. S. P. Watson, M. O. Clements, S. J. Foster, “Characterization of the starvation-survival response of Staphylococcus aureus,” J. Bacteriol. 180, 1750–1758 (1998). [PubMed]
  30. N. Bsat, A. Herbig, L. Casillas-Martinez, P. Setlow, J. D. Helmann, “Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors,” Mol. Microbiol. 29, 189–198 (1998). [CrossRef] [PubMed]
  31. A. Xiong, V. K. Singh, G. Cabrera, R. K. Jayaswal, “Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus,” Microbiology 146(Pt 3), 659–668 (2000).
  32. S. B. Philson, M. Llinas, “Siderochromes from Pseudomonas fluorescens. II. Structural homology as revealed by NMR spectroscopy,” J. Biol. Chem. 257, 8086–8090 (1982). [PubMed]
  33. S. B. Philson, M. Llinas, “Siderochromes from Pseudomonas fluorescens. I. Isolation and characterization,” J. Biol. Chem. 257, 8081–8085 (1982). [PubMed]
  34. B. Oudega, M. Vandenbol, G. Koningstein, “A 12 kb nucleotide sequence containing the alanine dehydrogenase gene at 279 degrees on the Bacillus subtilis chromosome,” Microbiology 143(Pt 5), 1489–1491 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited