OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 19 — Jul. 1, 2003
  • pp: 4119–4124

Whole-Field Fluorescence Microscope with Digital Micromirror Device: Imaging of Biological Samples

Takashi Fukano and Atsushi Miyawaki  »View Author Affiliations


Applied Optics, Vol. 42, Issue 19, pp. 4119-4124 (2003)
http://dx.doi.org/10.1364/AO.42.004119


View Full Text Article

Acrobat PDF (401 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a whole-field fluorescence microscope equipped with a Digital Micromirror Device to acquire optically sectioned images by using the fringe-projection technique and the phase-shift method. This system allows free control of optical sectioning strength through computer-controlled alteration of the fringe period projected onto a sample. We have employed this system to image viable cells expressing fluorescent proteins and discussed its biological applications.

© 2003 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(180.2520) Microscopy : Fluorescence microscopy
(230.3990) Optical devices : Micro-optical devices
(230.6120) Optical devices : Spatial light modulators

Citation
Takashi Fukano and Atsushi Miyawaki, "Whole-Field Fluorescence Microscope with Digital Micromirror Device: Imaging of Biological Samples," Appl. Opt. 42, 4119-4124 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-19-4119


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Wilson, Confocal Microscopy (Academic, New York, 1990).
  2. A. Sawano, H. Hama, N. Saito, and A. Miyawaki, “Multicolor imaging of Ca2+ and protein kinase C signals using novel epifluorescence microscopy,” Biophys. J. 82, 1076–1085 (2002).
  3. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
  4. J. Siegel, D. E. Elson, S. E. D. Webb, D. Parsons-Karavassilis, S. Lévêque-Fort, M. J. Cole, M. J. Lever, P. M. W. French, M. A. A. Neil, R. Juškaitis, L. O. Sucharov, and T. Wilson, “Whole-field five-dimensional fluorescence microscopy combining lifetime and spectral resolution with optical sectioning,” Opt. Lett. 26, 1338–1340 (2001).
  5. C.-H. Lee, H.-Y. Mong, and W.-C. Lin, “Noninterferometric wide-field optical profilometry with nanometer depth resolution,” Opt. Lett. 27, 1773–1775 (2002).
  6. M. R. Douglass and I. S. MuMurray, “Why is the Texas Instruments digital micromirror device reliable?” http://www.dlp.com/dlp_technology/dlp_technology_white_papers.asp, 1997.
  7. N. A. Riza and S. Sumriddetchkajorn, “Fault-tolerant dense multiwavelength add-drop filter with a two-dimensional digital micromirror device,” Appl. Opt. 37, 6355–6361 (1998).
  8. M. Liang, R. L. Stehr, and A. W. Krause, “Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination,” Opt. Lett. 22, 751–753 (1997).
  9. Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (1999).
  10. R. Juškaitis, T. Wilson, M. A. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383, 804–806 (1996).
  11. T. Wilson, R. Juškaitis, M. A. A. Neil, and M. Kozubek, “Confocal microscopy by aperture correlation,” Opt. Lett. 21, 1879–1881 (1996).
  12. R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, and T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc. 204, 119–137 (2001).
  13. F. Vuille, R. Lehmann, and K. Plamann, “Light efficiency vs. image acquisition time: considerations for parallel confocal microscopy applied to biological tissue observation,” Opt. Commun. 195, 361–369 (2001).
  14. C. MacAulay and A. Dlugan, “Use of digital micromirror devices in quantitative microscopy,” in Optical Investigations of Cells in Vitro and in Vivo, D. L. Farkas, R. C. Leif, and B. J. Tromberg, eds., Proc. SPIE 3260, 201–206 (1998).
  15. A. L. P. Dlugan, C. E. MacAulay, and P. M. Lane, “Improvements to quantitative microscopy though the use of digital micromirror devices,” in Optical Diagnostics of Living Cells III, D. L. Farkas and R. C. Leif, eds., Proc. SPIE 3921, 6–11 (2000).
  16. J. B. Sampsell, “An overview of the performance envelope of Digital Micromirror Device™ (DMD) based projection display systems,” in Digest of Technical Papers, Society for Information Display International Symposium (Society for Information Display, San Jose, Calif., 1994), pp. 669–672.
  17. L. J. Hornbeck, “Digital light processing: a new MEMS-based display technology,” in Technical Digest of the Institute of Electrical Engineers of Japan 14th Sensor Symposium (The Institute of Electrical Engineers of Japan, Tokyo, 1996), pp. 297–304.
  18. A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature 388, 882–887 (1997).
  19. M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, and S. A. Lukyanov, “Fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol. 17, 969–973 (1999).
  20. T. Nemoto, R. Kimura, K. Ito, A. Tachikawa, Y. Miyashita, M. Iino, and H. Kasai, “Sequential-replenishiment mechanism of exocytosis in pancreatic acini,” Nat. Cell Biol. 3, 253–258 (2001).
  21. K. Subramanian and T. Meyer, “Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores,” Cell 89, 963–971 (1997).
  22. L. Leybaert and M. J. Sanderson, “Intercellular calcium signaling and flash photolysis of caged compounds,” in Connexin Methods and Protocols, R. Bruzzone and C. Giaume, eds., Vol. 154 of Methods in Molecular Biology(Humana, Totawa, N.J., 2000), pp. 407–430.
  23. H. Tanaka, T. Kawanishi, T. Matsuda, M. Takahashi, and K. Shigenobu, “Intracellular free Ca2+ movements in cultured cardiac myocytes as shown by rapid scanning confocal microscope,” J. Cardiovasc. Pharmacol. 27, 761–769 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited