OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 2 — Jan. 10, 2003
  • pp: 204–217

Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media

Daniel L. Marks, Amy L. Oldenburg, J. Joshua Reynolds, and Stephen A. Boppart  »View Author Affiliations

Applied Optics, Vol. 42, Issue 2, pp. 204-217 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (520 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The resolution of optical coherence tomography (OCT) often suffers from blurring caused by material dispersion. We present a numerical algorithm for computationally correcting the effect of material dispersion on OCT reflectance data for homogeneous and stratified media. This is experimentally demonstrated by correcting the image of a polydimethyl siloxane microfludic structure and of glass slides. The algorithm can be implemented using the fast Fourier transform. With broad spectral bandwidths and highly dispersive media or thick objects, dispersion correction becomes increasingly important.

© 2003 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(110.4500) Imaging systems : Optical coherence tomography
(260.2030) Physical optics : Dispersion

Original Manuscript: April 8, 2002
Revised Manuscript: September 26, 2002
Published: January 10, 2003

Daniel L. Marks, Amy L. Oldenburg, J. Joshua Reynolds, and Stephen A. Boppart, "Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media," Appl. Opt. 42, 204-217 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. B. E. Bouma, G. J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, Inc., New York, 2001). [CrossRef]
  3. J. G. Fujimoto, S. A. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000). [CrossRef] [PubMed]
  4. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. (N.Y.) 4, 861–864 (1998). [CrossRef]
  5. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997). [CrossRef] [PubMed]
  6. J. F. de Boer, T. E. Milner, M. J. C. van Germert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997). [CrossRef] [PubMed]
  7. J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, M. W. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Selected Top. Quantum Electron. 2, 1017–1028 (1996). [CrossRef]
  8. J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996).
  9. A. Kohlhaas, C. Fromchen, E. Brinkmeyer, “High resolution OCDR for testing integrated-optical waveguides: Dispersion-corrupted experimental data corrected by a numerical algorithm,” J. Lightwave Technol. 9, 1493–1502 (1991). [CrossRef]
  10. E. Brinkmeyer, R. Ulrich, “High-Resolution OCDR in dispersive waveguides,” Electron. Lett. 26, 413–414 (1990). [CrossRef]
  11. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, T. Lasser, “Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography,” Opt. Express 9, 610–615 (2001). [CrossRef] [PubMed]
  12. K. M. Yung, S. L. Lee, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt. 4, 125–136 (1999). [CrossRef] [PubMed]
  13. J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66–75 (1998). [CrossRef] [PubMed]
  14. J. M. Schmitt, A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997). [CrossRef]
  15. Y. Pan, R. Birngruber, R. Engelhardt, “Contrast limits of coherence-gated imaging in scattering media,” Appl. Opt. 36, 2979–2983 (1997). [CrossRef] [PubMed]
  16. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817-1–053817-6 (2002). [CrossRef]
  17. X. Clivaz, F. Marquis-Weible, R. P. Salathe, “Optical low coherence reflectometry with 1.9 micron spatial resolution,” Electron. Lett. 28, 1553–1555 (1992). [CrossRef]
  18. B. E. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High resolution optical coherence tomographic imaging using a modelocked Ti:A1203 laser,” Opt. Lett. 20, 1486–1488 (1995). [CrossRef] [PubMed]
  19. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999). [CrossRef]
  20. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, J. G. Fujimoto, “Self-phase-modelocked Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996). [CrossRef] [PubMed]
  21. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, S. A. Boppart, “Study of an ultrahigh numerical aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27, 2010–2012 (2002). [CrossRef]
  22. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  23. M. Bertero, P. Bocacci, Introduction to Inverse Problems in Imaging (IOP Publishing, Philadelphia, 1998). [CrossRef]
  24. M. Born, E. Wolf, Principles of Optics (Cambridge University, Cambridge, UK, 1980).
  25. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, UK, 1995). [CrossRef]
  26. M. Bashkansky, J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25, 545–547 (2000). [CrossRef]
  27. J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4, 95–105 (1999). [CrossRef] [PubMed]
  28. J. Rogowska, M. E. Brezinski, “Evaluation of the AdaptiveSpeckle Suppression Filter for Coronary Optical Coherence Tomography Imaging,” IEEE Trans. Med. Imaging 14, 1261–1266 (2000). [CrossRef]
  29. J. J. Knab, “Interpolation of band-limited functions using the approximate prolate series,” IEEE Trans. Inf. Theory IT-25, 717–720 (1979). [CrossRef]
  30. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. USA 94, 4256–4261 (1997). [CrossRef] [PubMed]
  31. J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited