OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 2 — Jan. 10, 2003
  • pp: 227–234

Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography

I-Jen Hsu, Chia-Wei Sun, Chih-Wei Lu, C. C. Yang, Chun-Ping Chiang, and Chii-Wann Lin  »View Author Affiliations


Applied Optics, Vol. 42, Issue 2, pp. 227-234 (2003)
http://dx.doi.org/10.1364/AO.42.000227


View Full Text Article

Enhanced HTML    Acrobat PDF (754 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate what is to our knowledge a novel technique of improving the spatial resolution of an optical coherence tomography (OCT) system given a non-Gaussian light source spectrum. By using dispersive materials in the reference arm of the OCT system, the resultant dispersion variation led to a full-width at half maximum (FWHM) of the interference fringe envelope smaller than the Fourier transform-limited value of a Gaussian spectral shape with the same spectral FWHM, at the expense of significant tails. The effects of the tails, which would blur the OCT images, were tremendously reduced with a retrieval algorithm. Simulation results and processed OCT scanning images have shown the capability of the proposed technique.

© 2003 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(170.4500) Medical optics and biotechnology : Optical coherence tomography

History
Original Manuscript: June 3, 2002
Revised Manuscript: September 16, 2002
Published: January 10, 2003

Citation
I-Jen Hsu, Chia-Wei Sun, Chih-Wei Lu, C. C. Yang, Chun-Ping Chiang, and Chii-Wann Lin, "Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography," Appl. Opt. 42, 227-234 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-2-227


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fugimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997). [CrossRef] [PubMed]
  3. Y. Pan, H. Xie, G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001). [CrossRef]
  4. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, J. S. Nelson, “High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000). [CrossRef]
  5. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999). [CrossRef]
  6. T. A. Birks, W. J. Wadsworth, P. St. J. Russel, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000). [CrossRef]
  7. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001). [CrossRef]
  8. A. M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, R. P. Salathé, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Opt. Express 10, 349–353 (2002). [CrossRef] [PubMed]
  9. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992). [CrossRef] [PubMed]
  10. M. D. Kulkarni, C. W. Thomas, J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33, 1365–1367 (1997). [CrossRef]
  11. M. Bashkansky, M. D. Duncan, J. Reintjes, “Engineering and laboratory notes—Signal processing for improving field cross-correlation function in optical coherence tomography,” Appl. Opt. 37, 8137–8138 (1998).
  12. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408 (2002). [CrossRef]
  13. B. L. Danielson, C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30, 2975–2979 (1991). [CrossRef] [PubMed]
  14. C. K. Hitzenberger, A. Baumgartner, A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154, 179–185 (1998). [CrossRef]
  15. V. Westphal, S. Yazdanfar, A. M. Rollins, J. A. Izatt, “Real-time, high velocity-resolution color Doppler optical coherence tomography,” Opt. Lett. 27, 34–36 (2002). [CrossRef]
  16. Y. Zhao, Z. Chen, Z. Ding, H. Ren, J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27, 98–100 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited