OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 20 — Jul. 10, 2003
  • pp: 4196–4201

Optimized design of polarization-independent and temperature-insensitive broadband optical waveguide coupler by use of fluorinated polyimide

Baoxue Chen, Hongliang Lu, Dexin Zhao, Yifang Yuan, and Mamoru Iso  »View Author Affiliations

Applied Optics, Vol. 42, Issue 20, pp. 4196-4201 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A statistically optimized design method suitable for a polarization-independent and temperature-insensitive broadband waveguide coupler is proposed. By use of this method, a fluorinated polyimide waveguide 3-dB waveguide coupler for 1490 ∼ 1610 nm application is designed by optimizing polarization and temperature fluctuation. The validity of the design is verified through simulation based on the three-dimensional beam propagation method (3D-BPM), which revealed a coupling ratio of 50 ± 0.8% in a 120-nm bandwidth in the temperature range -10 to 40 °C for both orthogonal polarizations.

© 2003 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(200.0200) Optics in computing : Optics in computing
(230.7380) Optical devices : Waveguides, channeled

Original Manuscript: October 2, 2002
Revised Manuscript: February 26, 2003
Published: July 10, 2003

Baoxue Chen, Hongliang Lu, Dexin Zhao, Yifang Yuan, and Mamoru Iso, "Optimized design of polarization-independent and temperature-insensitive broadband optical waveguide coupler by use of fluorinated polyimide," Appl. Opt. 42, 4196-4201 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Takagi, K. Jinguji, M. Kawachi, “Silica-based waveguide-type wavelength-insensitive couplers(WINC’s) with series-tapered coupling structure,” IEEE J. Lightwave Technol. 10, 1815–1824 (1992). [CrossRef]
  2. A. Takagi, K. Jinguji, M. Kawachi, “Design and fabrication of broadband silicon-based optical waveguide couplers with asymmetric structure,” IEEE J. Quantum. Electron. 28, 848–855 (1992). [CrossRef]
  3. R. Reuter, H. Franke, C. Feger, “Evaluating polyimides as lightguide materials,” Appl. Opt. 27, 4565–4571 (1988). [CrossRef] [PubMed]
  4. J. Kobayashi, T. Matsuura, Y. Hida, S. Sasaki, T. Maruno, “Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches,” IEEE J. Lightwave Technol. 16, 1024–1029 (1998). [CrossRef]
  5. T. Kurokawa, N. Takato, Y. Katayama, “Polymer optical circuits for multimode optical fiber systems,” Appl. Opt. 19, 3124–3129 (1980). [CrossRef] [PubMed]
  6. D. H. Hartman, G. R. Lalk, J. W. Howse, R. R. Krchnavek, “Radiant cured polymer optical waveguides on printed circuit boards for photonic interconnection use,” Appl. Opt. 28, 40–47 (1989). [CrossRef] [PubMed]
  7. B. L. Booth, “Low loss channel waveguides in polymers,” IEEE J. Lightwave Technol. 7, 1445–1453 (1989). [CrossRef]
  8. N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, “4 × 4 polymer thermo-optic directional coupler switch at 1.55 μm,” Electron Lett. 30, 1445–1453 (1989).
  9. T. Matsuura, J. Kobayashi, S. Ando, T. Maruno, S. Sasaki, F. Yamamoto, “Heat-resistant flexible-film optical waveguides from fluorinated polyimides,” Appl. Opt. 38, 966–971 (1999). [CrossRef]
  10. J. W. Kang, J. P. Kim, W. Y. Lee, S. J. S. Kim, J. S. Lee, J. J. Kim, “Low-loss fluorinated poly(arylene ether sulfide) waveguides with high thermal stability,” IEEE J. Lightwave Technol. 19, 872–875 (2001). [CrossRef]
  11. T. Kaino, M. Fujiki, S. Oikawa, S. Nara, “Low-loss plastic fibers,” Appl. Opt. 20, 2886–2888 (1981). [CrossRef] [PubMed]
  12. S. Imamura, R. Yoshimura, T. Izawa, “Polymer channel waveguides with low loss at 1.3 μm,” Electron. Lett. 27, 1342–1343 (1991). [CrossRef]
  13. Y. Kokubun, S. Yoneda, H. Tanaka, “Temperature-independent narrowband optical filter at 1.3 μm wavelength by an athermal waveguide,” Electron. Lett. 32, 1998–2000 (1996). [CrossRef]
  14. H. Takahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” IEEE J. Lightwave Technol. 13, 447–455 (1995). [CrossRef]
  15. K. C. Ho, C. K. Seng, “Study of polarization-dependent coupling in optical waveguide directional couplers by the effective-index method with built-in perturbation correction,” IEEE J. Lightwave Technol. 20, 1018–1026 (2002). [CrossRef]
  16. B. X. Chen, Y. F. Yuan, M. Iso, “Design of wide wavelength-insensitive coupler using statistical optimum method,” Acta Optica Sinica 21, 996–1000 (2001).
  17. N. Takato, F. Hanawa, K. Okamoto, T. Oguchi, “Optical couplers using silica-based planar lightwave circuits,” NTT RD 43, 1281–1288 (1994).
  18. T. Nose, S. Nakahama, S. Miyata, Daigakuin Koubunshikagaku (Koudansha Scientific Co., Ltd., Tokyo, Japan, 1997).
  19. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuit (Ohm Co., Ltd., Tokyo, Japan, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited