OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 20 — Jul. 10, 2003
  • pp: 4202–4207

Optimized design of fluorinated polyimide based interleaver

Baoxue Chen, Hongbo Jia, Jianzhong Zhou, Dexin Zhao, Hongliang Lu, Yifang Yuan, and Mamoru Iso  »View Author Affiliations

Applied Optics, Vol. 42, Issue 20, pp. 4202-4207 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (158 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Statistical optimization method for the design of a fluorinated polyimide wavelength division element for optical communications is proposed. The optimized device is an interleaver element suitable for dividing over 40 wavelengths in the 1550 nm band. Optimization considers the inherent polarization dependence of fluorinated polyimide based on measurements of the dispersion characteristics and birefringence of fluorinated polyimide film. A 40-wavelength device is designed by use of the proposed technique for a working wavelength of 1550 nm and a wavelength interval of 0.8 nm. The device exhibited a 1-dB passband of 0.5 nm and a 3-dB passband of 0.8 nm, and output wavelength fluctuation due to polarization effects of less than 0.08 nm.

© 2003 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(200.0200) Optics in computing : Optics in computing
(230.7380) Optical devices : Waveguides, channeled

Original Manuscript: October 28, 2002
Revised Manuscript: April 14, 2003
Published: July 10, 2003

Baoxue Chen, Hongbo Jia, Jianzhong Zhou, Dexin Zhao, Hongliang Lu, Yifang Yuan, and Mamoru Iso, "Optimized design of fluorinated polyimide based interleaver," Appl. Opt. 42, 4202-4207 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Takahashi, K. Okamoto, Y. Inoue, “Arrayed-waveguide grating wavelength multiplexers for WDM system,” NTT Review 10, 30–36 (1998).
  2. K. Takada, M. Abe, T. Shibata, K. Okamoto, “10 GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett. 13, 577–578 (2001). [CrossRef]
  3. M. Oguma, K. Jinguji, T. Kitoh, T. Sibata, A. Himeno, “Flat-passband interleave filter with 200 GHz channel spacing based on planar lightwave circuit-type lattice structure,” Electron. Lett. 36, 1299–1300 (2000). [CrossRef]
  4. M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, Y. Hibino, “Flat-top and low-loss WDM filter composed of lattice-form interleave filter and arrayed-waveguide gratings on one chip.” OFC’2001, Technical Digest, pp. WB3-1–WB3-3, Anaheim, California(2001).
  5. K. Jinguji, M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18, 252–259 (2000). [CrossRef]
  6. J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, K. Sullivan, “Integrated interleaver technology enables high performance in DWDM systems,” Technical Proceedings, National Fiber Optic Engineers Conference, pp. 1410–1421, Baltimore (2001).
  7. T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Uetseka, “Novel architecture of wavelength interleaving filter with Fourier transform based MZIs,” OFC’2001, Technical Digest, pp. WB5-1–WB5-3, Anaheim, California (2001).
  8. T. Mizuno, T. Kitoh, T. Saida, M. Oguma, T. Shibata, Y. Hibino, “Dispersionless interleave filter based on transversal form optical filter,” Electron. Letts. 38, 1121–1122 (2002). [CrossRef]
  9. T. Kurokawa, N. Takato, Y. Katayama, “Polymer optical circuits for multimode optical fiber systems,” Appl. Opt. 19, 3124–3129 (1980). [CrossRef] [PubMed]
  10. R. Reuter, H. Franke, C. Feger, “Evaluating polyimides as lightguide materials,” Appl. Opt. 27, 4565–4571 (1988). [CrossRef] [PubMed]
  11. D. H. Hartman, G. R. Lalk, J. W. Howse, R. R. Krchnavek, “Radiant cured polymer optical waveguides on printed circuit boards for photonic interconnection use,” Appl. Opt. 28, 40–47 (1989). [CrossRef] [PubMed]
  12. B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989). [CrossRef]
  13. N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, “4 × 4 polymer thermo-optic directional coupler switch at 1.55 μm,” Electron. Lett. 30, 1445–1453 (1989).
  14. T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymetric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997). [CrossRef]
  15. J. Kobayashi, T. Matsuura, Y. Hida, S. Sasaki, T. Maruno, “Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches,” IEEE J. Lightwave Technol. 16, 1024–1029 (1998). [CrossRef]
  16. T. Matsuura, J. Kobayashi, S. Ando, T. Maruno, S. Sasaki, F. Yamamoto, “Heat-resistant flexible-film optical waveguides from fluorinated polyimides,” Appl. Opt. 38, 966–971 (1999). [CrossRef]
  17. J. W. Kang, J. P. Kim, W. Y. Lee, S. J. S. Kim, J. S. Lee, J. J. Kim, “Low-loss fluorinated poly(arylene ether sulfide) waveguides with high thermal stability,” IEEE J. Lightwave Technol. 19, 872–875 (2001). [CrossRef]
  18. H. Takahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” IEEE J. Lightwave Technol. 13, 447–455 (1995). [CrossRef]
  19. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuit, (Ohm Co., Ltd.Tokyo, Japan1993).
  20. B. X. Chen, H. L. Lu, D. X. Zhao, Y. F. Yuan, M. Iso, “Optimized design of temperature-insensitive optical waveguide coupler with 120-nm bandwidth using fluorinated polyimide,” Appl. Opt. 42, 271–274 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited