OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 20 — Jul. 10, 2003
  • pp: 4212–4219

Vacuum evaporated porous silicon photonic interference filters

Kate Kaminska, Tim Brown, Gisia Beydaghyan, and Kevin Robbie  »View Author Affiliations

Applied Optics, Vol. 42, Issue 20, pp. 4212-4219 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (463 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Porous materials with nanometer-scale structure are important in a wide variety of applications including electronics, photonics, biomedicine, and chemistry. Recent interest focuses on understanding and controlling the properties of these materials. Here we demonstrate porous silicon interference filters, deposited in vacuum with a technique that enables continuous variation of the refractive index between that of bulk silicon and that of the ambient (n ∼ 3.5 to 1). Nanometer-scale oscillations in porosity were introduced with glancing angle deposition, a technique that combines oblique deposition onto a flat substrate of glass or silicon in a high vacuum with computer control of substrate tilt and rotation. Complex refractive index profiles were achieved including apodized filters, with Gaussian amplitude modulations of a sinusoidal index variation, as well as filters with index matching antireflection regions. A novel quintic antireflection coating is demonstrated where the refractive index is smoothly decreased to that of the ambient, reducing reflection over a broad range of the infrared spectrum. Optical transmission characteristics of the filters were accurately predicted with effective medium modeling coupled with a calibration performed with spectroscopic ellipsometry.

© 2003 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(220.1230) Optical design and fabrication : Apodization
(260.2130) Physical optics : Ellipsometry and polarimetry
(310.1210) Thin films : Antireflection coatings
(310.1860) Thin films : Deposition and fabrication
(350.2460) Other areas of optics : Filters, interference

Original Manuscript: December 2, 2002
Revised Manuscript: April 4, 2003
Published: July 10, 2003

Kate Kaminska, Tim Brown, Gisia Beydaghyan, and Kevin Robbie, "Vacuum evaporated porous silicon photonic interference filters," Appl. Opt. 42, 4212-4219 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Macleod, “Challenges in the design and production of narrow band filters for optical fiber telecommunications,” in Optical and Infrared Thin Films, M. L. Fulton, ed., Proc. SPIE4094, 46–57 (2000). [CrossRef]
  2. L. Martinu, D. Poitras, “Plasma deposition of optical films and coatings: A review,” J. Vac. Sci. Technol. A 18, 2619–2645 (2000). [CrossRef]
  3. D. A. Linkens, M. F. Abbod, J. Metcalfe, B. Nichols, “Modeling and fabrication of optical interference rugate filters,” ISA Transactions 40, 2–16 (2001). [CrossRef]
  4. B. G. Bovard, “Rugate filter theory: an overview,” Appl. Opt. 32, 5427–5442 (1993). [CrossRef] [PubMed]
  5. H. Fabricius, “Gradient-index filters: designing filters with steep skirts, high reflection, and quintic matching layers,” Appl. Opt. 31, 5191–5196 (1992). [CrossRef] [PubMed]
  6. R. R. Willey, “Rugate broadband antireflection coating design,” in Current Developments in Optical Engineering and Commercial Optics, R. E. Fischer, H. M. Pollicove, W. J. Smith, eds., Proc. SPIE1168, 224–228 (1989). [CrossRef]
  7. W. H. Southwell, R. L. Hall, “Rugate filter sidelobe suppression using quintic and rugated quintic matching layers,” Appl. Opt. 28, 2949–2951 (1989). [CrossRef] [PubMed]
  8. M. G. Berger, M. Arens-Fischer, M. Tonissen, M. Kruger, S. Billat, H. Luth, S. Hilbrich, W. Thieb, P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997). [CrossRef]
  9. S. Lim, S. Shih, J. G. Wager, “Design and fabrication of a double bandstop rugate filter grown by plasma-enhanced chemical vapor deposition,” Thin Solid Films 277, 144–146 (1996). [CrossRef]
  10. S. Cianci, J. Bland-Hawthorn, J. O’Byrne, “Rugate filters: quasars beyond z ∼ 7?,” Astron. Soc. Pac. Conf. Ser. 195, 391–397 (2000).
  11. J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998). [CrossRef]
  12. W. H. Southwell, “Spectral response calculations of rugate filters using coupled-wave theory,” J. Opt. Soc. Am. A 5, 1558–1564 (1988). [CrossRef]
  13. W. H. Southwell, “Using apodization functions to reduce sidelobes in rugate filters,” Appl. Opt. 28, 5091–5094 (1989). [CrossRef] [PubMed]
  14. H. A. Abu-Safia, A. I. Al-Sharif, I. O. Aljarayesh, “Rugate filter sidelobe suppression using half-apodization,” Appl. Opt. 32, 4831–4835 (1993). [CrossRef] [PubMed]
  15. P. A. Snow, E. K. Squire, P. St. J. Russell, L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999). [CrossRef]
  16. F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nature Materials 1, 39–41 (2002). [CrossRef]
  17. G. Placido, J. Russell, Z. Gou, “Graded-index films using aluminium oxynitrides,” in Developments in Optical Component Coatings, I. Reid, ed., Proc. SPIE2776, 159–168 (1996). [CrossRef]
  18. S. Lim, J. H. Ryu, J. F. Wager, T. K. Plant, “Rugate filters grown by plasma-enhanced chemical vapor deposition,” Thin Solid Films 245, (1994).
  19. R. Overend, D. R. Gibson, R. Marshall, “Rugate filter fabrication using neutral cluster beam deposition,” Vacuum 43, 51–54 (1992). [CrossRef]
  20. K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculpted thin films,” Nature 384, 616–616 (1996). [CrossRef]
  21. K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, N. J. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997). [CrossRef]
  22. K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997). [CrossRef]
  23. R. Messier, V. C. Venugopal, P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000). [CrossRef]
  24. T. Motohiro, Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28, 2466–2482 (1989). [CrossRef] [PubMed]
  25. I. J. Hodgkinson, F. Horowitz, H. A. Macleod, M. Sikkens, J. J. Wharton, “Measurement of the principal refractive indices of thin films deposited at oblique incidence,” J. Opt. Soc. Am. A 2, 1693–1697 (1985). [CrossRef]
  26. L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997). [CrossRef]
  27. I. J. Hodgkinson, Q. Hong Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997). [CrossRef]
  28. K. Robbie, C. Shafail, M. J. Brett, “Thin films with nanometer-scale pillar microstructure,” J. Mater. Res. 14, 3158–3163 (1999). [CrossRef]
  29. A. J. McPhun, Q. H. Wu, I. J. Hodgkinson, “Birefringent rugate filters,” Electron. Lett. 34, 360–361 (1998). [CrossRef]
  30. H. G. Tompkins, W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry (Wiley, New York, 1999).
  31. S. Zangooie, M. Schubert, C. Trimble, D. W. Thompson, J. A. Woollam, “Infrared ellipsometry characterization of porous silicon Bragg reflectors,” Appl. Opt. 40, 906–912 (2001). [CrossRef]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).
  33. A. L. Barabasi, H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University, Cambridge, UK, 1995). [CrossRef]
  34. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill Optical and Electro-Optical Engineering Series, McGraw-Hill, New York, 1989).
  35. O. Toader, S. John, “Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps,” Phys. Rev. E 66, 1–18 (2002). [CrossRef]
  36. O. Toader, S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited