OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 21 — Jul. 20, 2003
  • pp: 4244–4260

Effect of inelastic scattering on underwater daylight in the ocean: model evaluation, validation, and first results

Marc Schroeder, Hans Barth, and Rainer Reuter  »View Author Affiliations


Applied Optics, Vol. 42, Issue 21, pp. 4244-4260 (2003)
http://dx.doi.org/10.1364/AO.42.004244


View Full Text Article

Enhanced HTML    Acrobat PDF (273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A model based on a matrix-operator theory capable of simulating underwater daylight in the ocean is presented. The main focus is on gelbstoff and chlorophyll fluorescence as well as water Raman scattering as sources of inelastic scattering and their effect on underwater daylight and relevance for the remote sensing of ocean color. Any combination of inelastic sources can be investigated, including differences in simulated underwater daylight in the absence and the presence of these sources. To our knowledge, it is the first matrix-operator model to include all these inelastic sources. The model allows simulations for case 1 and case 2 waters. Calculations can be done with highly anisotropic phase functions as they are observed in the ocean, and every order of multiple scattering is considered. A detailed mathematical description of inelastic sources is given, and a special treatment of the depth dependency of these sources is presented. The model is validated by comparison with depth-dependent and spectrally resolved measurements of downward irradiance in the open ocean. The differences between measured and simulated data are within the error of the radiometric measurements. Water Raman scattering has been found to contribute significantly to water-leaving radiance. The inelastic fraction depends on the water Raman scattering coefficient, on the ratio of the total attenuation coefficient at excitation and emission wavelengths, and on the spectral course of the irradiance incident on the ocean. For clear ocean waters the inelastic fraction can reach values of more than 17% [C = 0.03 mg m-3, ay (440 nm) = 0.01 m-1] at wavelengths relevant for the remote sensing of ocean color. The inelastic fraction of gelbstoff fluorescence can reach or even exceed the relevance of water Raman scattering at short wavelengths. In the water column, depending on optically active substances and on actual depth, water Raman scattering can provide 100% of the light field at wavelengths greater than 580 nm. The effect of gelbstoff fluorescence on depth-dependent irradiances is less significant than the effect of water Raman scattering in all cases considered, except for near surface levels and high gelbstoff concentrations.

© 2003 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.7340) Atmospheric and oceanic optics : Water
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.5860) Scattering : Scattering, Raman

History
Original Manuscript: August 27, 2002
Revised Manuscript: February 20, 2003
Published: July 20, 2003

Citation
Marc Schroeder, Hans Barth, and Rainer Reuter, "Effect of inelastic scattering on underwater daylight in the ocean: model evaluation, validation, and first results," Appl. Opt. 42, 4244-4260 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-21-4244

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited