OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 21 — Jul. 20, 2003
  • pp: 4341–4348

Realistic model for the output beam profile of stripe and tapered superluminescent light-emitting diodes

Frederica Causa and Jayanta Sarma  »View Author Affiliations

Applied Optics, Vol. 42, Issue 21, pp. 4341-4348 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (179 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new model to analyze the spatial characteristics of the output beam of conventional (straight-stripe) and tapered superluminescent light-emitting diodes. The device model includes both spontaneous and stimulated emission processes as well as a nonuniform carrier density distribution to correctly represent current spreading and carrier diffusion effects. Near- and far-field intensity profiles computed with this model are accurately verified over a wide range of injection currents by comparisons with experimental results measured from in-house fabricated devices.

© 2003 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(230.0250) Optical devices : Optoelectronics
(230.3670) Optical devices : Light-emitting diodes

Original Manuscript: January 27, 2003
Revised Manuscript: April 17, 2003
Published: July 20, 2003

Frederica Causa and Jayanta Sarma, "Realistic model for the output beam profile of stripe and tapered superluminescent light-emitting diodes," Appl. Opt. 42, 4341-4348 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. S. Wagner, T. E. Chapuran, “Broadband high-density WDM transmission using superluminescent diodes,” Electron. Lett. 26, 696–697 (1990). [CrossRef]
  2. T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High-power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999). [CrossRef]
  3. Y. Kashima, A. Maroba, H. Takano, “Linear InGaAsP edge-emitting LEDs for single-mode fiber communications,” J. Lightwave Technol. 12, 1650–1655 (1992). [CrossRef]
  4. A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Top. Quantum Electron. 5, 1176–1184 (1999). [CrossRef]
  5. W. K. Burns, C.-L. Chen, R. P. Moeller, “Fiber-optic gyroscopes with broadband sources,” J. Lightwave Technol. LT-1, 98–105 (1983). [CrossRef]
  6. B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, “A superluminescent diode at 1.3 µm with very low spectral modulation,” IEEE J. Quantum Electron. 30, 703–712 (1994). [CrossRef]
  7. N. S. K. Kwong, K. Y. Lau, N. Barchaim, “High-power high-efficiency GaAlAs superluminescent diodes with an internal absorber for lasing suppression,” IEEE J. Quantum Electron. 25, 696–704 (1989). [CrossRef]
  8. Y. Kashima, T. Munakata, “Broad spectrum InGaAsP edge-emitting light-emitting diode using selective-area metal-organic vapor-phase epitaxy,” IEEE Photon. Technol. Lett. 10, 1223–1225 (1998). [CrossRef]
  9. I. M. Joindot, C. Y. Boisrobert, “Peculiar features of InGaAsP DH superluminescent diodes,” IEEE J. Quantum Electron. 25, 1659–1665 (1989). [CrossRef]
  10. I. G. A. Davies, A. R. Goodwin, R. G. Plumb, “High-power Ga(1 – x)Al(x)As edge-emitting LEDs,” in Digest of Conference on Lasers and Electro-optics, June 1981, IEEE J. Quantum Electron.17, 56 (1981).
  11. I. Middlemast, J. Sarma, S. Yunus, “High power tapered superluminescent diodes using novel etched deflectors,” Electron. Lett. 33, 903–904 (1997). [CrossRef]
  12. H. Okamoto, M. Wada, Y. Sakai, T. Hirono, Y. Kawaguchi, Y. Kondo, Y. Kadota, K. Kishi, Y. Itaya, “A narrow-beam 1.3-µm superluminescent diode integrated with a spot-size converter and a new type rear absorbing region,” J. Lightwave Technol. 16, 1881–1887 (1998). [CrossRef]
  13. G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 12, 2454–2457 (1988). [CrossRef]
  14. T. Takayama, O. Imafuji, Y. Kouchi, M. Yuri, A. Yoshikawa, K. Itoh, “100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guided self-aligned structure,” IEEE J. Quantum Electron. 32, 1981–1987 (1996). [CrossRef]
  15. F. Causa, J. Sarma, S. Yunus, “Characterization of angled tapered superluminescent LEDs,” Appl. Opt. 41, 5045–5050 (2002). [CrossRef] [PubMed]
  16. T. Kambayashi, J. Sarma, “Spontaneous emission noise distribution from a gain-guided multimoded waveguide,” IEEE J. Quantum Electron. QE-19, 1084–1091 (1983). [CrossRef]
  17. F. Causa, J. Sarma, R. Balasubramanyam, “A new method for computing nonlinear carrier diffusion in semiconductor optical devices,” IEEE Trans. Electron Devices 46, 1135–1139 (1999). [CrossRef]
  18. F. Causa, J. Sarma, “A quasi-analytic model for longitudinally nonuniform semiconductor optical sources,” Opt. Commun. 183, 149–157 (2000). [CrossRef]
  19. J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” poster paper at 1999 Users Workshop, Industrial Liaison Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, Sheffield, U.K., 8 July 1999.
  20. G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986). [CrossRef]
  21. J. Lai, C. Lin, “Carrier diffusion effects in tapered semiconductor laser amplifiers,” IEEE J. Quantum Electron. 34, 1247–1256 (1998). [CrossRef]
  22. W. Streifer, R. D. Burnham, D. R. Scifres, “An analytic study of (GaAl)As gain guided lasers at threshold,” IEEE J. Quantum Electron. QE-18, 856–864 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited