OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 22 — Aug. 1, 2003
  • pp: 4415–4422

Quantum efficiency of silicon photodiodes in the near-infrared spectral range

Chris Hicks, Mark Kalatsky, Richard A. Metzler, and Alexander O. Goushcha  »View Author Affiliations


Applied Optics, Vol. 42, Issue 22, pp. 4415-4422 (2003)
http://dx.doi.org/10.1364/AO.42.004415


View Full Text Article

Enhanced HTML    Acrobat PDF (138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The quantum efficiency of silicon photodiodes and factors that might be responsible for the drop in quantum efficiency in the near-infrared spectral range were analyzed. It was shown that poor reflectivity from the rear surface of the die could account for a decrease in Si photodiode quantum efficiency in near-infrared spectral range by more than 20%. The photodiode quantum efficiency was modeled with an appropriate representation for the carrier-collection efficiency dependence on the die penetration depth. A corrected analytical expression for calculating the photodiode quantum efficiency is given. Some methods to improve the quantum efficiency of silicon photodiodes in near-infrared spectral range are discussed.

© 2003 Optical Society of America

OCIS Codes
(000.2190) General : Experimental physics
(040.5160) Detectors : Photodetectors
(040.6040) Detectors : Silicon
(040.6070) Detectors : Solid state detectors
(160.1890) Materials : Detector materials
(160.6000) Materials : Semiconductor materials

History
Original Manuscript: November 21, 2002
Revised Manuscript: April 24, 2003
Published: August 1, 2003

Citation
Chris Hicks, Mark Kalatsky, Richard A. Metzler, and Alexander O. Goushcha, "Quantum efficiency of silicon photodiodes in the near-infrared spectral range," Appl. Opt. 42, 4415-4422 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-22-4415


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
  2. O. Christensen, “Quantum efficiency of the internal photoelectric effect in silicon and germanium,” J. Appl. Phys. 47, 689–695 (1976). [CrossRef]
  3. A. Haapalinna, P. Kärhä, E. Ikonen, “Spectral reflectance of silicon photodiodes,” Appl. Opt. 37, 729–732 (1998). [CrossRef]
  4. M. J. Keevers, M. A. Green, “Absorption edge of silicon from solar cell spectral response measurements,” Appl. Phys. Lett. 66, 174–176 (1995). [CrossRef]
  5. A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967).
  6. J. Geist, “Silicon photodiode front region collection efficiency models,” J. Appl. Phys. 51, 3993–3995 (1980). [CrossRef]
  7. T. S. Moss, Optical Properties of Semiconductors (Butterworth Scientific, London, 1959).
  8. L. Werner, J. Fischer, U. Johannsen, J. Hartmann, “Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm and 1015 nm using a laser-based cryogenic radiometer,” Metrologia 37, 279–284 (2000). [CrossRef]
  9. J. Hartmann, J. Fischer, U. Johannsen, L. Werner, “Analytical model for the temperature dependence of the spectral responsivity of silicon,” J. Opt. Soc. Am. B 18, 942–947 (2001). [CrossRef]
  10. J. Geist, E. F. Zalewski, “The quantum yield of silicon in the visible,” Appl. Phys. Lett. 35, 503–505 (1979). [CrossRef]
  11. E. Antončik, N. K. S. Gaur, “Theory of the quantum efficiency in silicon and germanium,” J. Phys. C 11, 735–744 (1978). [CrossRef]
  12. R. Korde, J. Geist, “Quantum efficiency stability of silicon photodiodes,” Appl. Opt. 26, 5284–5290 (1987). [CrossRef] [PubMed]
  13. S. E. Holland, N. W. Wang, W. W. Moses, “Development of low noise, back-side illuminated silicon photodiode arrays,” IEEE Trans. Nucl. Sci. 44, 443–447 (1997). [CrossRef]
  14. R. Köhler, R. Goebel, R. Pello, J. Bonhoure, “Effects of humidity and cleaning on the sensitivity of Si photodiodes,” Metrologia 28, 211–215 (1991). [CrossRef]
  15. T. N. Swe, K. S. Yeo, K. W. Chew, S. Chu, “Design and optimization of novel high responsivity, wideband silicon photodiode,” Jpn. J. Appl. Phys. 40, 2738–2740 (2001). [CrossRef]
  16. M. J. Keevers, M. A. Green, “Extended infrared response of silicon solar cells and the impurity photovoltaic effect,” Sol. Energy Mater. Sol. Cells 41/42, 195–204 (1996). [CrossRef]
  17. T. Trupke, M. A. Green, P. Würfel, “Improving solar cell efficiencies of subband-gap light,” J. Appl. Phys. 92, 4117–4122 (2002). [CrossRef]
  18. M. A. Green, D. Jordan, “Technology and economics of three advanced silicon solar cells,” Prog. Photovolt. Res. Appl. 6, 169–180 (1998). [CrossRef]
  19. M. A. Green, “Third generation photovoltaics: solar cells for 2020 and beyond,” Physica E 14, 65–70 (2002). [CrossRef]
  20. E. Daub, P. Würfel, “Ultra-low values of the absorption coefficient of Si obtained from luminescence,” Phys. Rev. Lett. 74, 1020–1023 (1995). [CrossRef] [PubMed]
  21. W. C. Dash, R. Neuman, “Intrinsic optical absorption in single-crystal germanium and silicon at 77 K and 300 K,” Phys. Rev. 99, 1151–1155 (1955). [CrossRef]
  22. J. Geist, E. F. Zalewski, A. R. Schaefer, “Spectral response self-calibration and interpolation of silicon photodiodes,” Appl. Opt. 19, 3795–3799 (1980). [CrossRef] [PubMed]
  23. T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4392–4403 (1996). [CrossRef] [PubMed]
  24. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors. Numerical Data and Graphical Information (Kluwer Academic, Boston, 1999).
  25. J. Geist, “Quantum efficiency of the p-n junction in silicon as an absolute radiometric standard,” Appl. Opt. 18, 760–762 (1979). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited