OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 22 — Aug. 1, 2003
  • pp: 4505–4513

Wavelength-tunable spectral filters based on the optical rotatory dispersion effect

Chun Ye  »View Author Affiliations


Applied Optics, Vol. 42, Issue 22, pp. 4505-4513 (2003)
http://dx.doi.org/10.1364/AO.42.004505


View Full Text Article

Enhanced HTML    Acrobat PDF (223 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical arrangement for constructing wavelength-tunable spectral filters is presented that makes use of a set of dispersive polarization rotations to select wavelengths. A filter in the arrangement is initially mechanically tunable, requires no achromatic retarder, and can be further electrically tunable, switchable, or both, depending on the elements selected. Test measurements and results are presented and described. Modified arrangements with additional retarder(s) or liquid-crystal polarization rotator(s) are suggested and discussed.

© 2003 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(230.2240) Optical devices : Faraday effect
(230.3720) Optical devices : Liquid-crystal devices
(260.2030) Physical optics : Dispersion
(260.5430) Physical optics : Polarization
(350.2460) Other areas of optics : Filters, interference

History
Original Manuscript: January 3, 2003
Revised Manuscript: May 2, 2003
Published: August 1, 2003

Citation
Chun Ye, "Wavelength-tunable spectral filters based on the optical rotatory dispersion effect," Appl. Opt. 42, 4505-4513 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-22-4505


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Evans, “The birefringent filter,” J. Opt. Soc. Am. 39, 229–242 (1949). [CrossRef]
  2. A. Dollfus, F. Colson, D. Crussaire, F. Launary, “A monochromator for solar quantitative imagery: the instrument FPSS,” Astron. Astrophys. 151, 235–253 (1985).
  3. D. Bonaccini, F. Stauffer, “High resolution solar bidimensional spectroscopy with a Universal Birefringent Filter in tandem with a Fabry-Perot interferometer: tests and experimental results,” Astron. Astrophys. 229, 272–278 (1990).
  4. C. Bendlin, R. Volkmer, F. Kneer, “A new instrument for high resolution, two-dimensional solar spectroscopy,” Astron. Astrophys. 257, 817–823 (1992).
  5. G. Salucci, L. Bertello, F. Cavallini, G. Ceppatelli, A. Righini, “The height dependence of intensity and velocity structure in the solar photosphere,” Astron. Astrophys. 285, 322–332 (1994).
  6. L. J. November, L. M. Wikins, “Liquid crystal polarimeter: a solid state imager for solar vector magnetic fields,” Appl. Opt. 34, 1659–1668 (1995).
  7. D. Neidig, P. Wiborg, M. Confer, B. Haas, R. Dunn, K. S. Balasubramaniam, C. Gullixson, D. Craig, M. Kaufman, W. Hull, R. McGraw, T. Henry, R. Rentschler, C. Keller, H. Jones, R. Coulter, S. Gregory, R. Schimming, B. Smaga, “The USAF improved solar observing optical network (ISOON) and its impact on solar synoptic data bases,” Synopt. Solar Phys. 140, 519–528 (1998).
  8. H. R. Morris, C. C. Hoyt, P. J. Treado, “Imaging spectrometers for fluorescence and raman microscopy: acousto-optic and liquid crystal tunable filters,” Appl. Spectrosc. 48, 857–866 (1994). [CrossRef]
  9. R. Lansford, G. Bearman, S. E. Fraser, “Resolution of multiple green fluorescent protein color variant and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6, 311–318 (2001). [CrossRef] [PubMed]
  10. T. Kimura, M. Saruwatari, K. Otsuka, “Birefringent branching filters for wideband optical FDM communications,” Appl. Opt. 12, 373–379 (1973). [CrossRef] [PubMed]
  11. H. Wright, C. M. Crandall, P. Miller, “Active filters enable color imaging,” Laser Focus World 5, 85–90 (1996).
  12. G. D. Sharp, S. E. Gilman, K. M. Johnson, “Progress in field-sequential color shutter technology,” in Projection Displays III, M. H. Wu, ed., Proc. SPIE3013, 107–111 (1997). [CrossRef]
  13. S. S. M. Rees, J. Staromlynska, M. P. Gillyon, J. R. Davy, “Final design and testing of the laser airborne depth sounder filter,” Opt. Eng. 36, 1204–1213 (1997). [CrossRef]
  14. B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C. R Acad. Sci. 197, 1593 (1933).
  15. B. Lyot, “Slitless spectrophotometer,” U.S. patent2,718,170 (20September1955).
  16. A. M. Title, W. J. Rosenberg, “Tunable birefringent filters,” Opt. Eng. 20, 815–823 (1981). [CrossRef]
  17. S. Pancharatnam, “Achromatic combination of birefringent plates. II. An achromatic quarter-wave plate,” Proc. Indian Acad. Sci. A 41, 137–144 (1955).
  18. J. M. Beckers, “Achromatic linear retarders,” Appl. Opt. 10, 973–975 (1971). [CrossRef] [PubMed]
  19. P. Hariharan, “Achromatic and apochromatic halfwave and quarterwave retarders,” Opt. Eng. 35, 3335–3337 (1996). [CrossRef]
  20. J. F. Lotspeich, R. R. Stephens, D. M. Henderson, “Electro-optic tunable filter,” Opt. Eng. 20, 830–836 (1981). [CrossRef]
  21. W. J. Gunning, “Electro-optically tuned spectral filters: a review,” Opt. Eng. 20, 837–845 (1981). [CrossRef]
  22. G. Kopp, “Tunable birefringent filters using liquid crystal variable retarders,” in Polarization Analysis and Measurement II, D. B. Chenault, H. Goldstein, eds., Proc. SPIE2265, 193–201 (1994). [CrossRef]
  23. K. M. Johnson, G. D. Sharp, “Ferroelectric liquid crystal tunable filters and color generator,” U.S. patent5,132,826 (21July1992).
  24. G. D. Sharp, K. M. Johnson, “Split-element liquid crystal tunable optical filters,” U.S. patent6,091,462 (18July2000).
  25. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, New York, 1988).
  26. D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, San Diego, Calif., 1990).
  27. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), Chap. 6. [CrossRef]
  28. C. J. Koester, “Achromatic combination of half-wave plates,” J. Opt. Soc. Am. 49, 405–409 (1959). [CrossRef]
  29. Electro-Optics Technology, Inc., Traverse City, Michigan 49686 ( http://www.eotech.com/) .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited