OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 22 — Aug. 1, 2003
  • pp: 4560–4565

Optical power limiting with photoinduced anisotropy of azobenzene films

Pengfei Wu, Reji Philip, Ramesh B. Laghumavarapu, Janakriam Devulapalli, Devulapalli V. G. L. N. Rao, Brian R. Kimball, Masato Nakashima, and Barry S. DeCristofano  »View Author Affiliations


Applied Optics, Vol. 42, Issue 22, pp. 4560-4565 (2003)
http://dx.doi.org/10.1364/AO.42.004560


View Full Text Article

Enhanced HTML    Acrobat PDF (102 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the power-limiting properties of photoanisotropic azobenzene films with low-power lasers. The trans-cis photoisomerization and molecular reorientation of azobenzene molecules induced by polarized laser beams result in intensity-dependent anisotropic effects. Consequently, the transmittance of the input beam that passes through the film between two crossed polarizers becomes enhanced at low intensities and clamped at high intensities. The limiting threshold is adjustable by changing the intensity of excitation beam.

© 2003 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.4320) Optical devices : Nonlinear optical devices
(260.1440) Physical optics : Birefringence
(310.6860) Thin films : Thin films, optical properties

History
Original Manuscript: December 17, 2002
Revised Manuscript: April 16, 2003
Published: August 1, 2003

Citation
Pengfei Wu, Reji Philip, Ramesh B. Laghumavarapu, Janakriam Devulapalli, Devulapalli V. G. L. N. Rao, Brian R. Kimball, Masato Nakashima, and Barry S. DeCristofano, "Optical power limiting with photoinduced anisotropy of azobenzene films," Appl. Opt. 42, 4560-4565 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-22-4560


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, E. W. V. Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt. 36, 4110–4122 (1997). [CrossRef] [PubMed]
  2. R. Lepkowicz, A. Kobyakov, D. J. Hagan, E. W. V. Stryland, “Picosecond optical limiting in reverse saturable absorbers: a theoretical and experimental study,” J. Opt. Soc. Am. B 19, 94–101 (2002). [CrossRef]
  3. N. V. Kamanina, A. I. Plekhanov, “Mechanisms of optical limiting in fullerene-doped π-conjugated organic structure demonstrated with polyimide and COANP molecules,” Opt. Spectrosc. 93, 408–415 (2002). [CrossRef]
  4. M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002). [CrossRef]
  5. G. Zhou, X. Wang, D. Wang, Z. Shao, M. Jiang, “Upconversion fluorescence and optical power limiting effects based on the two- and three-photon absorption process of a new organic dye BPAS,” Appl. Opt. 41, 1120–1123 (2002). [CrossRef] [PubMed]
  6. I. M. Belousova, V. A. Grigor’ev, O. B. Danilov, A. G. Kalintsev, A. V. Kris’ko, N. G. Mironova, M. S. Yur’ev, “Role of light-induced scattering in the optical limitation of laser radiation on the basis of fullerene-containing media,” Opt. Spectrosc. 90, 292–301 (2001). [CrossRef]
  7. G. S. Maciel, N. Rakov, C. B. Araújo, “Enhanced optical limiting performance of a nonlinear absorber in a solution containing scattering nanoparticles,” Opt. Lett. 27, 740–742 (2002). [CrossRef]
  8. W. Ji, A. K. Kukaswadia, Z. C. Feng, S. H. Tang, “Self-defocusing of nanosecond laser pulses in ZnTe,” J. Appl. Phys. 75, 3340–3343 (1994). [CrossRef]
  9. J. J. Liu, P. P. Banerjee, Q. W. Song, “Role of diffusive, photovoltaic, and thermal effects in beam fanning in LiNbO3,” J. Opt. Soc. Am. B 11, 1688–1693 (1994). [CrossRef]
  10. D. I. Kovsh, S. Yang, D. J. Hagan, E. W. V. Stryland, “Nonlinear optical beam propagation for optical limiting,” Appl. Opt. 38, 5168–5180 (1999). [CrossRef]
  11. J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997). [CrossRef]
  12. O. V. Andreeva, I. M. Belousova, V. G. Bespalov, Y. N. Efimov, V. N. Sizov, A. S. Cherkasov, E. Yu Yutanova, A. L. Pyaĩt, “Recording dynamic holograms in toluene solutions of fullerene C60,” J. Opt. Technol. 69, 170–174 (2002). [CrossRef]
  13. M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994). [CrossRef] [PubMed]
  14. P. Tran, “Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect,” J. Opt. Soc. Am. B 14, 2589–2595 (1997). [CrossRef]
  15. R. Frey, C. Flytzanis, “Optical limitation in resonant Faraday media,” Opt. Lett. 25, 838–840 (2000). [CrossRef]
  16. G. E. Dovgalenko, M. Klotz, G. J. Salamo, G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287 (1996). [CrossRef]
  17. P. Wu, L. Wang, J. Xu, B. Zou, “Transient biphotonic holographic grating in photoisomerization azo materials,” Phys. Rev. B 57, 3874–3880 (1998). [CrossRef]
  18. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994). [CrossRef]
  19. T. Ikeda, O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873–1875 (1995). [CrossRef] [PubMed]
  20. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Transient optical modulation with a disperse-red-1-doped polymer film,” Appl. Opt. 39, 814–817 (2000). [CrossRef]
  21. S. B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, H. K. Hall, “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).
  22. R. A. Hill, S. Dreher, A. Knoesen, D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995). [CrossRef]
  23. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999). [CrossRef]
  24. For a recent review see C. Dekker, “Carbon nanotubes as molecular quantum wires,” Phys. Today 52, 22–28 (1999). [CrossRef]
  25. R. Philip, G. Ravindra Kumar, N. Sandhyarani, T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160–13166 (2000). [CrossRef]
  26. D. H. Choi, “Effect of temperature on photoinduced reorientation of azobenzene chromophore in the side chain copolymers,” Bull. Korean Chem. Soc. 20, 1010–1016 (1999).
  27. S. P. Palto, V. A. Khavrichev, S. G. Yudin, L. M. Blinov, A. A. Udal’yev, “On a model of photo-induced optical anisotropy in Langmuir-Blodgett films: low temperature studies,” Mol. Mater. 2, 63–68 (1992).
  28. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78, 1189–1191 (2001). [CrossRef]
  29. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited