OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 22 — Aug. 1, 2003
  • pp: 4573–4579

Porous Broadband Antireflection Coating by Glancing Angle Deposition

Scott R. Kennedy and Michael J. Brett  »View Author Affiliations


Applied Optics, Vol. 42, Issue 22, pp. 4573-4579 (2003)
http://dx.doi.org/10.1364/AO.42.004573


View Full Text Article

Acrobat PDF (552 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We deposited graded-index SiO<sub>2</sub> films using glancing angle deposition to produce high-transmission antireflection coatings on glass. Because of the accurate control over the thin-film microstructure provided by this technique, we were able to create graded densities with a Gaussian profile resulting in transmission values greater than 99.9% for a single-layer interface with bandwidths up to 460 nm. The graded-index layer also provides low reflectance at nonnormal angles of incidence with transmission values degrading little for incidence angles up to 30°.

© 2003 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(240.0310) Optics at surfaces : Thin films
(310.1210) Thin films : Antireflection coatings
(310.1860) Thin films : Deposition and fabrication

Citation
Scott R. Kennedy and Michael J. Brett, "Porous Broadband Antireflection Coating by Glancing Angle Deposition," Appl. Opt. 42, 4573-4579 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-22-4573


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Fraunhofer, Gesammelte Schriften (F. Hommel, Munich, 1887).
  2. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).
  3. N. Ford and P. W. McMillan, “Integral antireflection films for glasses: a review,” Glass Technol. 26, 104–107 (1985).
  4. L. Schirone, G. Sotgiu, and F. P. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films 297, 296–298 (1997).
  5. P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, and M. Peneva, “High efficiency solar cell using a thin porous silicon layer,” Thin Solid Films 297, 299–303 (1997).
  6. W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett. 36, 891–893 (1980).
  7. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, and J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
  8. M. Thonissen, M. G. Berger, M. Kruger, W. Theiss, S. Hilbrich, and R. Arens-Fisher, “Improved interference filter structures made of porous silicon,” Mater. Res. Soc. Symp. Proc. 452, 643–648 (1997).
  9. R. Clausius, Die mechanische Behandlung der Electricitat (Vieweg, Braunschweig, Germany, 1879).
  10. O. F. Mossotti, Memorie di Matematica e di Fisica della Societa Italiana delle Scienze Residente in Modena, 24(2), 49–74 (1850).
  11. H. A. Lorentz, The Theory of Electrons (B. G. Teubner, Leipzig, 1909; reprint, Dover, New York, 1952).
  12. See L. Lorenz, Wiedemannsche Annalen 11, 70 (1880).
  13. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385–420 (1904).
  14. J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions, II,” Philos. Trans. R. Soc. London 205, 237–288 (1906).
  15. R. Jacobsson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” in Physics of Thin Films, G. Hass, M. Francombe, and R. Hoffman, eds. (Academic, New York, 1975), vol. 8, pp. 51–98.
  16. C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
  17. R. Landauer, “Electrical conductivity in inhomogeneous media,” in Proceedings of the First Congress on the Electrical Transport and Optical Properties of Inhomogeneous Media, J. C. Garland and D. B. Tanner, eds. (American Institute of Physics, New York, 1978), vol. 40, pp. 2–43.
  18. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8, 549–553 (1991).
  19. J. M. Nieuwenhuizen and H. B. Haanstra, “Microfractography of thin films,” Philips Tech. Rev. 27, 87–91 (1966).
  20. K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
  21. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanisms and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
  22. L. Abelmann and C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
  23. R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
  24. K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, and J. N. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
  25. K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
  26. I. Hodgkinson, Q. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
  27. H. A. MacLeod, Thin Film Optical Filters (American Elsevier, New York, 1969).
  28. S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth-eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited