OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 22 — Aug. 1, 2003
  • pp: 4606–4611

Fast-Fourier-Domain Delay Line for in vivo Optical Coherence Tomography with a Polygonal Scanner

Amy L. Oldenburg, J. Joshua Reynolds, Daniel L. Marks, and Stephen A. Boppart  »View Author Affiliations


Applied Optics, Vol. 42, Issue 22, pp. 4606-4611 (2003)
http://dx.doi.org/10.1364/AO.42.004606


View Full Text Article

Acrobat PDF (131 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate <i>in vivo</i> optical coherence tomography using a Fourier-domain optical delay line constructed with a commercially available polygonal scanner. The 20-faceted polygonal mirror array, capable of scanning at rates up to 15 kHz, is implemented at 4 kHz to acquire 500 × 500 pixel images at 8 frames/s with a signal-to-noise ratio of 80 dB. Features of this delay line include scalability to high repetition rates, 98.6% linearity in group delay over 2 mm, and bandwidth support exceeding 150 nm. Images are obtained in an animal model (<i>Xenopus laevis</i>), and limitations due to phase-delay nonlinearity and polygon asymmetry are discussed.

© 2003 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5800) Instrumentation, measurement, and metrology : Scanners
(170.4500) Medical optics and biotechnology : Optical coherence tomography

Citation
Amy L. Oldenburg, J. Joshua Reynolds, Daniel L. Marks, and Stephen A. Boppart, "Fast-Fourier-Domain Delay Line for in vivo Optical Coherence Tomography with a Polygonal Scanner," Appl. Opt. 42, 4606-4611 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-22-4606


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
  2. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
  3. S. A. Boppart, G. J. Tearney, B. E. Bouma, M. E. Brezinski, J. F. Southern, and J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. USA 94, 4256–4261 (1997).
  4. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861–864 (1998).
  5. B. E. Bouma and G. J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2001).
  6. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Exp. 3, 219–229 (1998), http://www.opticsexpress.org.
  7. G. J. Tearney, B. E. Bouma, S. A. Boppart, and B. Golubovic, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
  8. F. Lindgren, R. Gianotti, R. Walti, R. P. Salathe, A. Haas, M. Nussberger, M. L. Schmatz, and W. Bachtold, “−78-dB shot-noise limited optical low-coherence reflectometry at 42-m/s scan speed,” IEEE Photon. Technol. Lett. 9, 1613–1615 (1997).
  9. J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, and R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun. 154, 1–4 (1998).
  10. N. Delachenal, R. Walti, R. Gianotti, S. Christov, P. Wagner, R. P. Salathe, U. Durr, and G. Ulbers, “Robust and rapid optical low-coherence reflectometer using a polygon mirror,” Opt. Commun. 162, 195–199 (1999).
  11. M. Lai, “Kilohertz scanning optical delay line employing a prism array,” Appl. Opt. 40, 6334–6336 (2001).
  12. N. G. Chen and Q. Zhu, “Rotary mirror array for high-speed optical coherence tomography,” Opt. Lett. 27, 607–609 (2002).
  13. P.-L. Hsiung, X. Li, C. Chudoba, I. Hartl, T. H. Ko, and J. G. Fujimoto, “High-speed path-length scanning with a multiple-pass cavity delay line,” Appl. Opt. 42, 640–648 (2003).
  14. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
  15. S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878–L880 (2001).
  16. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27, 2010–2012 (2002).
  17. A. G. Pololeanu, “Unbalanced versus balanced operation in an optical coherence tomography system,” Appl. Opt. 39, 173–182 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited