OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 22 — Aug. 1, 2003
  • pp: 4612–4620

Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties

Johannes Swartling, Jan S. Dam, and Stefan Andersson-Engels  »View Author Affiliations

Applied Optics, Vol. 42, Issue 22, pp. 4612-4620 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (149 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Time-resolved and spatially resolved measurements of the diffuse reflectance from biological tissue are two well-established techniques for extracting the reduced scattering and absorption coefficients. We have performed a comparison study of the performance of a spatially resolved and a time-resolved instrument at wavelengths 660 and 785 nm and also of an integrating-sphere setup at 550–800 nm. The first system records the diffuse reflectance from a diode laser by means of a fiber bundle probe in contact with the sample. The time-resolved system utilizes picosecond laser pulses and a single-photon-counting detection scheme. We extracted the optical properties by calibration using known standards for the spatially resolved system, by fitting to the diffusion equation for the time-resolved system, and by using an inverse Monte Carlo model for the integrating sphere. The measurements were performed on a set of solid epoxy tissue phantoms. The results showed less than 10% difference in the evaluation of the reduced scattering coefficient among the systems for the phantoms in the range 9–20 cm-1, and absolute differences of less than 0.05 cm-1 for the absorption coefficient in the interval 0.05–0.30 cm-1.

© 2003 Optical Society of America

OCIS Codes
(120.3150) Instrumentation, measurement, and metrology : Integrating spheres
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

Original Manuscript: November 4, 2002
Revised Manuscript: April 21, 2003
Published: August 1, 2003

Johannes Swartling, Jan S. Dam, and Stefan Andersson-Engels, "Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties," Appl. Opt. 42, 4612-4620 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996). [CrossRef] [PubMed]
  2. G. A. Wagnières, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998). [PubMed]
  3. G. J. Müller, A. Roggan, eds., Laser-Induced Interstitial Thermotherapy (SPIE Press, Bellingham, Wash., 1995).
  4. K. Ivarsson, J. Olsrud, C. Sturesson, P. H. Möller, B. R. Persson, K.-G. Tranberg, “Feedback interstitial diode laser (805 nm) thermotherapy system: ex vivo evaluation and mathematical modeling with one and four fibers,” Lasers Surg. Med. 22, 86–96 (1998). [CrossRef]
  5. A. M. K. Nilsson, R. Berg, S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt. 34, 4609–4619 (1995). [CrossRef] [PubMed]
  6. T. Johansson, M. S. Thompson, M. Stenberg, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Feasibility study of a novel system for combined light dosimetry and interstitial photodynamic treatment of massive tumors,” Appl. Opt. 41, 1462–1468 (2002). [CrossRef] [PubMed]
  7. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001). [CrossRef]
  8. C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002). [CrossRef]
  9. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  10. S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash.1993), pp. 211–226.
  11. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996). [CrossRef] [PubMed]
  12. R. Bays, G. Wagnières, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996). [CrossRef] [PubMed]
  13. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999). [CrossRef] [PubMed]
  14. T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissue-like turbid media over a broad spectral range using a non-contact Fourier interferometric, hyperspectral imaging system,” Appl. Opt. 39, 6487–6497 (2000). [CrossRef]
  15. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40, 1155–1164 (2001). [CrossRef]
  16. S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989). [CrossRef] [PubMed]
  17. S. Andersson-Engels, R. Berg, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990). [CrossRef] [PubMed]
  18. M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992). [CrossRef] [PubMed]
  19. S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure,” Appl. Opt. 31, 3509–3517 (1992). [CrossRef] [PubMed]
  20. K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary in vivo results,” Invest. Radiol. 29, 410–414 (1994). [CrossRef] [PubMed]
  21. J. Kölzer, G. Mitic, J. Otto, W. Zinth, “Measurements of the optical properties of breast tissue using time-resolved transillumination,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Müller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 143–152 (1995). [CrossRef]
  22. X. Liang, L. Wang, P. P. Ho, R. R. Alfano, “True scattering coefficients of turbid media,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 571–574 (1995). [CrossRef]
  23. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999). [CrossRef]
  24. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993). [CrossRef] [PubMed]
  25. A. Roggan, H. J. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–46 (1995). [CrossRef]
  26. A. M. K. Nilsson, C. Sturesson, D. L. Liu, S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998). [CrossRef]
  27. J. S. Dam, T. Dalgaard, P. E. Fabricius, S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39, 1202–1209 (2000). [CrossRef]
  28. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  29. K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994). [CrossRef]
  30. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996). [CrossRef] [PubMed]
  31. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).
  32. G. de Vries, J. F. Beek, G. W. Lucassen, M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944–947 (1999). [CrossRef]
  33. M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993). [CrossRef]
  34. M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducable phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995). [CrossRef] [PubMed]
  35. I. V. Yaroslavsky, A. N. Yaroslavsky, V. V. Tuchin, H.-J. Schwarzmaier, “Effect of the scattering delay on time-dependent photon migration in turbid media,” Appl. Opt. 36, 6529–6538 (1997). [CrossRef]
  36. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited