OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 23 — Aug. 10, 2003
  • pp: 4663–4669

Novel real-time joint-transform correlation by use of acousto-optic heterodyning

Ting-Chung Poon and Ying Qi  »View Author Affiliations


Applied Optics, Vol. 42, Issue 23, pp. 4663-4669 (2003)
http://dx.doi.org/10.1364/AO.42.004663


View Full Text Article

Enhanced HTML    Acrobat PDF (718 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To replace the film recording aspect of performing optical correlation, conventional real-time joint-transform correlation (JTC) optical systems make use of a spatial light modulator (SLM) located in the Fourier plane to record the joint-transform power spectrum (JPS) to achieve real-time processing. The use of an SLM in the Fourier plane, however, is a major drawback in these systems because SLMs are limited in resolution, phase uniformity, and contrast ratio, which are, therefore, not desirable for robust applications. We propose a hybrid (optical/electronic) processing technique to achieve real-time joint-transform correlation. The technique employs acousto-optic heterodyning scanning. The proposed real-time JTC system does not require an SLM at the Fourier plane as in other real-time JTC systems. This departure from the conventional scheme is extremely important as the proposed approach does not depend on SLM issues. We develop the theory of the technique and substantiate it with experimental results.

© 2003 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.4550) Fourier optics and signal processing : Correlators
(070.5010) Fourier optics and signal processing : Pattern recognition

History
Original Manuscript: November 1, 2002
Revised Manuscript: April 16, 2003
Published: August 10, 2003

Citation
Ting-Chung Poon and Ying Qi, "Novel real-time joint-transform correlation by use of acousto-optic heterodyning," Appl. Opt. 42, 4663-4669 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-23-4663


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. VanderLugt, “Signal detection by complex spatial filter,” IEEE Trans. Inf. Theory IT-10, 139–146 (1964).
  2. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef] [PubMed]
  3. G. Indebetouw, “Scanning optical correlator,” Opt. Lett. 6, 10–12 (1981). [CrossRef] [PubMed]
  4. T.-C. Poon, R. Juday, T. Hara, eds., Feature Issue on Spatial Light Modulators, Appl. Opt. 37, 7471–7552 (1998).
  5. J. E. Rau, “Real-time complex spatial modulation,” J. Opt. Soc. Am. 57, 798–802 (1967). [CrossRef]
  6. P. Nisenson, R. A. Sprague, “Real-time optical correlation,” Appl. Opt. 14, 2602–2606 (1975). [CrossRef] [PubMed]
  7. F. T. S. Yu., X. Lu, “A real-time programmable joint transform correlator,” Opt. Commun 52, 10–16 (1984). [CrossRef]
  8. F. T. S. Yu, S. Jutamulia, T. W. Lin, D. Gregory, “Adaptive real-time pattern recognition using a liquid crystal TV based joint transform correlator,” Appl. Opt. 26, 1370–1372 (1987). [CrossRef] [PubMed]
  9. J. M. Florence, “Joint-transform correlator systems using deformable-mirror spatial light modulator,” Opt. Lett. 14, 341–316 (1989). [CrossRef] [PubMed]
  10. T. D. Hudson, D. W. Trivett, D. Gregory, J. C. Kirsch, “Real time optical correlator architectures using a deformable mirror spatial light modulator,” Appl. Opt. 28, 4853–4860 (1989). [CrossRef] [PubMed]
  11. G. Lu, Z. Zhang, S. Wu, F. T. S. Yu, “Implementation of a non-zero-order joint-transform correlator by use of phase-shifting techniques,” Appl. Opt. 38, 470–483 (1995).
  12. A. Gregory, “Time multiplexed miniature optical correlator,” Lett. rep. RD-RE-88-02, U.S. Army Missile Command, Alabama (1988).
  13. T. H. Bames, K. Matsuda, T. Eiju, K. Matsumoto, F. Johnson, “Joint transform correlator using a phase only spatial light modulator,” Jap. J. Appl. Phys. 29, L1293–L1296 (1990). [CrossRef]
  14. S. Jutamulia, G. M. Storti, D. A. Gregory, J. C. Kirsch, “Illumination-independent high-efficiency joint transform correlator,” Appl. Opt. 30, 4173–4175 (1991). [CrossRef] [PubMed]
  15. D. A. Gregory, J. C. Kirsch, E. C. Tam, “Full complex modulation using liquid-crystal televisions,” Appl. Opt. 31, 163–165 (1992). [CrossRef] [PubMed]
  16. Q. Tang, B. Javidi, “Technique for reducing the redundant and self-correlation terms in joint transform correlators,” Appl. Opt. 32, 1911–1918 (1993). [CrossRef] [PubMed]
  17. M. S. Alam, M. A. Karim, “Fringe-adjusted joint transform correlation,” Appl. Opt. 32, 4344–4350 (1993). [CrossRef] [PubMed]
  18. C. J. Kuo, “Joint transform correlator improved by means of the frequency-selective technique,” Opt. Eng. 33, 522–527 (1994). [CrossRef]
  19. T. J. Grycewicz, “Applying time-modulation to the joint transform correlator,” Opt. Eng. 33, 1813–1820 (1994). [CrossRef]
  20. M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator.” Opt. Eng. 33, 1610–1617 (1994). [CrossRef]
  21. M. S. Alam, “Fractional power fringe-adjusted joint transform correlation,” 34, 3208–3216 (1995).
  22. T. Nomura, Y. Yoshimura, K. Itoh, Y. Ichioka, “Incoherent-only joint-transform correlator,” Appl. Opt. 34, 1420–1425 (1995). [CrossRef] [PubMed]
  23. T. Nomura, “Phase-encoded joint transform correlator to reduce the influence of extraneous signals,” Appl. Opt. 37, 3651–3655 (1998). [CrossRef]
  24. I. Labastida, A. Carnicer, E. Martin-Badosa, I. Juvells, S. Vallmitjana, “On-axis joint transform correlation based on a four-level power spectrum,” Appl. Opt. 38, 6111–6116 (1999). [CrossRef]
  25. H.-J. Su, M. A. Karim, “Phase-shifting joint transform correlation with phase-iterative algorithm: effect of the dynamic range limit,” Appl. Opt. 39, 5556–5559 (1999). [CrossRef]
  26. A. Cherri, M. S. Alam, “Reference phase-encoded fringe-adjusted joint transform correlation,” Appl. Opt. 40, 1216–1225 (2001). [CrossRef]
  27. T.-C. Poon, A. Korpel, “Optical transfer function of an acousto-optic heterodyning image processor,” Opt. Lett. 4, 317–319 (1979). [CrossRef] [PubMed]
  28. A. W. Lohmann, W. T. Rhodes, “Two-pupil synthesis of optical transfer functions,” Appl. Opt. 17, 1145–1151 (1978). [CrossRef]
  29. T.-C. Poon, “Scanning holography and two-dimensional image processing by acousto-optic two-pupil synthesis,” J. Opt. Soc. Am. A 2, 621–627 (1985). [CrossRef]
  30. J. Mait, “Pupil-function design for complex incoherent spatial filtering,” J. Opt. Soc. Am. A 4, 1185–1193 (1987). [CrossRef]
  31. A. Korpel, “Acousto-Optics,” in Applied Solid State Science, R. Wolfe, ed., Vol. 3 (Academic, New York, 1972).
  32. T.-C. Poon, P. P. Banerjee, Contemporary Optical Image Processing With Matlab (Elsevier Science, Oxford, U.K., 2001).
  33. B. Y. Soon, M. S. Alam, M. A. Karim, “Improved feature extraction by use of a joint wavelet transform correlator,” Appl. Opt. 37, 821–827 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited