OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 23 — Aug. 10, 2003
  • pp: 4681–4687

Active Contour Segmentation by Use of a Multichannel Incoherent Optical Correlator

Eric Hueber, Laurent Bigué, and Pierre Ambs  »View Author Affiliations

Applied Optics, Vol. 42, Issue 23, pp. 4681-4687 (2003)

View Full Text Article

Acrobat PDF (259 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe an optoelectronic incoherent multichannel processor that is able to segment an object in a real image. The process is based on an active contour algorithm that has been transposed to optical signal processing to accelerate image processing. This implementation requires exact-valued correlations and thus opens attractive perspectives in terms of optical analog computation. Furthermore, this optical multichannel processor setup encourages incoherent processing with high-resolution images.

© 2003 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.4550) Fourier optics and signal processing : Correlators
(070.5010) Fourier optics and signal processing : Pattern recognition
(100.0100) Image processing : Image processing
(100.1160) Image processing : Analog optical image processing

Eric Hueber, Laurent Bigué, and Pierre Ambs, "Active Contour Segmentation by Use of a Multichannel Incoherent Optical Correlator," Appl. Opt. 42, 4681-4687 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. Meyer-Eppler, “Die funktionalanalytische Behandlung des Schattenproblems,” Optik (Stuttgart) 1, 465–474 (1946).
  2. F. B. Berger, “Optical cross-correlator,” U.S. patent 2,787,188 (1957).
  3. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964).
  4. P. V. C. Hough, “Method and means for recognizing patterns,” U.S. patent 3,069,654 (1962).
  5. S. Laut, F. Xu, P. Ambs, and Y. Fainman, “A matrix of 64 × 64 computer generated holograms for an optical Hough transform processor,” in Optical Information Science and Technology, (OIST 97): Optical Theory and Neural Networks, A. Mikaelian, ed., Proc. SPIE 3402, 22–31 (1998).
  6. N. Michael and R. Arrathoon, “Optoelectronic parallel watershed implementation for segmentation of magnetic resonance brain images,” Appl. Opt. 36, 9269–9286 (1997).
  7. W. Feng, Y. Yan, G. Huang, and G. Jin, “Micro-optical multiwavelet element for hybrid texture segmentation processor,” Opt. Eng. 37, 185–188 (1998).
  8. J. Barbé and J. Campos, “Image segmentation with a white light optical correlator,” in 18th Congress of the International Commission for Optics, San Francisco, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, and T. Asakura, eds., Proc. SPIE 3749, 775–776 (1999).
  9. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” Int. J. Comput. Vision 1, 321–331 (1988).
  10. O. Germain and P. Réfrégier, “Optimal snake-based segmentation of a random luminance target on a spatially disjoint background,” Opt. Lett. 21, 1845–1847 (1996).
  11. C. Chesnaud, P. Réfrégier, and V. Boulet, “Statistical region snake-based segmentation adapted to different physical noise models,” IEEE Trans. Pattern Anal. Mach. Intell. 21, 1145–1157 (1999).
  12. O. Germain, “Segmentation d’images radar: caractérisation des détecteurs de bord et apport des contours actifs,” Ph.D. dissertation, University of Aix-Marseille III, France (2001).
  13. J. L. Horner and P. Gianino, “Additional properties of the phase-only correlation filter,” Opt. Eng. 23, 695–697 (1984).
  14. Q. Tang and B. Javidi, “Sensitivity of the nonlinear joint transform correlator: experimental investigation,” Appl. Opt. 31, 4016–4024 (1992).
  15. B. V. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773–4801 (1992).
  16. L. Bigué, M. Fracès, and P. Ambs, “Experimental implementation of a joint transform correlator using synthetic discriminant functions,” Opt. Las. Eng. 23, 93–111 (1995).
  17. E. Hueber, L. Bigué, P. Réfrégier, and P. Ambs, “Optical snake-based segmentation processor with a shadow-casting correlator,” Opt. Lett. 26, 1852–1854 (2001).
  18. C. Kervrann and F. Heitz, “Robust tracking of stochastic deformable models in long image sequences,” in Proceedings of IEEE Conference on Computer Vision Pattern Recognition (Seattle, 1994), pp. 724–728.
  19. P. Réfrégier, O. Germain, and T. Gaidon, “Optimal snake segmentation of target and background with independent Gamma density probabilities, application to speckled and preprocessed images,” Opt. Commun. 137, 382–388 (1997).
  20. M. M. Robertson, “Interpretation of Patterson diagrams,” Nature 152, 411–412 (1943).
  21. L. Bragg, “Lightning calculations with light,” Nature 154, 69–72 (1944).
  22. G. L. Rogers, Noncoherent Optical Processing (Wiley, New York, 1977).
  23. V. Laude, “Corrélation optique optimale et application aux architectures cohérentes et incohérentes,” Ph.D. dissertation, University of Paris XI Orsay (1994).
  24. M. Gedziorowski and J. Garcia, “Programmable opticaldigital processor for rank order and morphological filtering,” Opt. Commun. 119, 207–217 (1995).
  25. D. P. Casasent and G. House, “Implementation issues for a noncoherent optical correlator,” in Optical Pattern Recognition V, D. P. Casasent and T.-H. Chao, eds., Proc. SPIE 2237, 179–188 (1994).
  26. V. Laude, “Diffraction analysis of pixelated incoherent shadow casting,” Opt. Commun. 138, 394–402 (1997).
  27. E. L. Green, “Diffraction in lensless correlation,” Appl. Opt. 7, 1237–1239 (1968).
  28. V. Laude, P. Chavel, and P. Réfrégier, “Implementation of arbitrary real-valued correlation filters for the shadow-casting incoherent correlator,” Appl. Opt. 35, 5267–5274 (1996).
  29. O. Ruch and P. Réfrégier, “Comparison of Hausdorff distances performance in dissimilarity measurements for silhouette discrimination,” in Automatic Target Recognition XI, F. A. Sadjadi, ed., Proc. SPIE 4379, 454–465 (2001).
  30. K. A. Bauchert and S. A. Serati, “High-speed multi-level 512 × 512 spatial light modulator,” in Optical Pattern Recognition XI, D. P. Casasent and T.-H. Chao, eds., Proc. SPIE 4043, 59–65 (2000).
  31. P. Ambs and L. Bigué, “Characterization of an analog ferroelectric spatial light modulator. Application to dynamic diffractive optical elements and optical information processing,” in Optoelectronic Information Processing: Optics for Information Systems, 4th Euro-American workshop on optoelectronic Information Processing, P. Réfrégier, B. Javidi, C. Ferreira, and S. Vallmitjana, eds., SPIE Critical Review CR81, 365–393 (2001).
  32. A. Matwyschuk, P. Ambs, and F. Christnacher, “Target tracking correlator assisted by a snake-based optical segmentation method,” Opt. Commun. 219, 125–137 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited