## Polynomial Distance Classifier Correlation Filter for Pattern Recognition

Applied Optics, Vol. 42, Issue 23, pp. 4688-4708 (2003)

http://dx.doi.org/10.1364/AO.42.004688

Acrobat PDF (1525 KB)

### Abstract

We introduce what is to our knowledge a new nonlinear shift-invariant classifier called the polynomial distance classifier correlation filter (PDCCF). The underlying theory extends the original linear distance classifier correlation filter [Appl. Opt. **35,** 3127 (1996)] to include nonlinear functions of the input pattern. This new filter provides a framework (for combining different classification filters) that takes advantage of the individual filter strengths. In this new filter design, all filters are optimized jointly. We demonstrate the advantage of the new PDCCF method using simulated and real multi-class synthetic aperture radar images.

© 2003 Optical Society of America

**OCIS Codes**

(100.4550) Image processing : Correlators

(100.5010) Image processing : Pattern recognition

(100.6740) Image processing : Synthetic discrimination functions

**Citation**

Mohamed Alkanhal and B. V. K. Vijaya Kumar, "Polynomial Distance Classifier Correlation Filter for Pattern Recognition," Appl. Opt. **42**, 4688-4708 (2003)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-23-4688

Sort: Year | Journal | Reset

### References

- Y. N. Hsu, H. H. Arsenault, and G. April, “Rotation-invariant digital pattern recognition using circular harmonic expansion,” Appl. Opt. 21, 4012–4015 (1982).
- D. Casasent and W. Cox, “RI-MINACE filters to augment segmentation of touching objects,” in Optical Pattern Recognition VIII, D. P. Casasent and T. Chao, eds. Proc. SPIE 3073, 354–363 (1997).
- B. V. K. Vijaya Kumar, A. Mahalanobis, and A. Takessian, “Optimal tradeoff circular harmonic function correlation filter methods providing controlled in-plane rotation,” IEEE Trans. Image Process. 9, 1025–1034 (2000).
- C. F. Hester and D. Casasent, “Multivariant technique for multiclass pattern recognition,” Appl. Opt. 19, 1758–1761 (1980).
- B. V. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773–4801 (1992).
- A. Mahalanobis, B. V. K. Vijaya Kumar, S. Song, S. R. F. Sims, and J. F. Epperson, “Unconstrained correlation filters,” Appl. Opt. 33, 3751–3759 (1994).
- D. L. Flannery and J. L. Horner, “Fourier optical signal processors,” Proc. IEEE 77, 1511–1527 (1989).
- A. Mahalanobis, A. Forman, M. Bower, N. Day, and R. F. Cherry, “A quadratic distance classifier for multi-class SAR ATR using correlation filters,” in Ultrahigh Resolution Radar, R. S. Vickers, ed. Proc. SPIE 1875, 84–95 (1993).
- K. Fukunaga, Statistical Pattern Recognition (Academic, San Diego, Calif., 1990).
- G. L. Sicoranza, “Quadratic filters for signal processing,” Proc. IEEE 80, 1263–1285 (1992).
- T. M. Cover, “Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition,” IEEE Trans. Electron. Comput. EC-14, 326–334 (1965).
- A. VanderLugt and F. B. Rotz, “The use of film nonlinearities in optical spatial filtering,” Appl. Opt. 1, 215–222 (1970).
- B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989).
- Ph. Réfrégier and V. Laude, “Nonlinear joint transform correlation: an optimal solution for adaptive image discrimination and input noise robustness,” Opt. Lett. 19, 405–407 (1994).
- C. S. Weaver and J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
- Q. Tang and B. Javidi, “Sensitivity of the nonlinear joint transform correlator: experimental investigations,” Appl. Opt. 31, 4016–4024 (1992).
- A. Mahalanobis and B. V. K. Vijaya Kumar, “Polynomial filters for higher order and multi-input information fusion,” in 11th Euro American Opto-Electronic Information Processing Workshop, Spain, June 1997, pp. 221–231.
- K. Al-Mashouq, B. V. K. Vijaya Kumar, and M. Alkanhal, “Analysis of signal-to-noise ratio of polynomial correlation filters,” in Optical Pattern Recognition X, D. P. Casasent and T. Chao, eds. Proc. SPIE 3715, 407–413 (1999).
- Three Class Public MSTAR data set (CD version), Released for Defense Advanced Research Projects Agency (DARPA) by Veda Incorporated, the Dayton Group, 1997.
- A. Mahalanobis, B. V. K. Vijaya Kumar, and S. R. F. Sims, “Distance classifier correlation filters for distortion tolerance, discrimination, and clutter rejection,” in Photonics for Processors, Neural Networks, and Memories, J. L. Horner, B. Javidi, S. T. Kowel, and W. J. Miceli, eds. Proc. SPIE 2026, 325–337 (1993).
- A. Mahalanobis, D. W. Carlson, B. V. K. Vijaya Kumar, and S. R. F. Sims, “Distance classifier correlation filters,” in Hybrid Image and Signal Processing IV, D. P. Casasent and A. G. Tescher, eds. Proc. SPIE 2238, 2–13 (1994).
- A. Mahalanobis, D. W. Carlson, and B. V. K. Vijaya Kumar, “Evaluation of MACH and DCCF correlation filters for SAR ATR using MSTAR public data base,” in Algorithms for Synthetic Aperture Radar Imagery V, E. G. Zelnio, ed. Proc. SPIE 3370, 460–469 (1998).
- A. Mahalanobis, L. Ortiz, and B. V. K. Vijaya Kumar, “Performance of the MACH/DCCF algorithms on the 10-class public release MSTAR data set,” in Algorithms for Synthetic Aperture Radar Imagery VI, E. G. Zelnio, ed. Proc. SPIE 3721, 285–291 (1999).
- A. Mahalanobis, L. Ortiz, B. V. K. Vijaya Kumar, and A. Ezekiel, “Correlation ATR performance using Xpatch (synthetic) training data,” in Algorithms for Synthetic Aperture Radar Imagery VII, E. G. Zelnio, ed. Proc. SPIE 4053, 340–343 (2000).
- A. Mahalanobis and A. V. Forman Jr., N. Day, M. Bower, and R. Cherry, “Multiclass SAR ATR using shift-invariant correlation filters,” Pattern Recogn. 27, 619–626 (1994).
- A. Mahalanobis, B. V. K. Vijaya Kumar, and S. R. F. Sims, “Distance-classifier correlation filters for multiclass target recognition,” Appl. Opt. 35, 3127–3133 (1996).
- L. M. Kaplan, R. M. E. Asika, and K. N. Namuduri, “Effect of signal-to-clutter ratio on template-based ATR,” in Algorithms for Synthetic Aperture Radar Imagery V, E. G. Zelnio, ed. Proc. SPIE 3370, 408–419 (1998).
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University, New York, 1993).
- W. H. Beyer, CRC Standards Mathematical Tables and Formulae (CRC Press, Boca Raton, Florida, 1991).
- M. Alkanhal, B. V. K. Vijaya Kumar, and A. Mahalanobis, “Combining multiple correlators using neural networks,” in Optical Pattern Recognition VIII, D. P. Casasent and T. Chao, eds. Proc. SPIE 3073, 398–403 (1997).
- K. Al-Ghoneim, “Learning ranks for pattern recognition,” Ph.D. dissertation (Carnegie Mellon University, Pittsburgh, 1996).
- K. S. Fu, “A step towards unification of syntactic and statistical pattern recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 5, 200–205 (1983).
- E. Mandler and J. Schuermann, “Combining the classification results of independent classifiers based on the Dempster/Shafer theory of evidence,” in Pattern Recognition and Artificial Intelligence: Towards an Integration, E. S. Gelsema and L. N. Kanal, eds. (North-Holland, Amsterdam, 1988), pp. 381–393.
- T. K. Ho, J. J. Hull, and S. N. Srihari, “Decision combination in multiple classifier systems,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 66–75 (1994).
- User’s Manual for Xpatch, DEMACO Inc., 1995 (DEMACO Inc. purchased by Science Applications International Corporation, San Diego, Calif., 1999.)
- R. Duda, P. Hart, and D. Stork, Pattern Classification (Wiley, New York, 2000).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.