OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 23 — Aug. 10, 2003
  • pp: 4688–4708

Polynomial distance classifier correlation filter for pattern recognition

Mohamed Alkanhal and B. V. K. Vijaya Kumar  »View Author Affiliations


Applied Optics, Vol. 42, Issue 23, pp. 4688-4708 (2003)
http://dx.doi.org/10.1364/AO.42.004688


View Full Text Article

Enhanced HTML    Acrobat PDF (1525 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce what is to our knowledge a new nonlinear shift-invariant classifier called the polynomial distance classifier correlation filter (PDCCF). The underlying theory extends the original linear distance classifier correlation filter [Appl. Opt. 35, 3127 (1996)] to include nonlinear functions of the input pattern. This new filter provides a framework (for combining different classification filters) that takes advantage of the individual filter strengths. In this new filter design, all filters are optimized jointly. We demonstrate the advantage of the new PDCCF method using simulated and real multi-class synthetic aperture radar images.

© 2003 Optical Society of America

OCIS Codes
(100.4550) Image processing : Correlators
(100.5010) Image processing : Pattern recognition
(100.6740) Image processing : Synthetic discrimination functions

History
Original Manuscript: November 10, 2002
Revised Manuscript: April 14, 2003
Published: August 10, 2003

Citation
Mohamed Alkanhal and B. V. K. Vijaya Kumar, "Polynomial distance classifier correlation filter for pattern recognition," Appl. Opt. 42, 4688-4708 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-23-4688


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. N. Hsu, H. H. Arsenault, G. April, “Rotation-invariant digital pattern recognition using circular harmonic expansion,” Appl. Opt. 21, 4012–4015 (1982). [CrossRef] [PubMed]
  2. D. Casasent, W. Cox, “RI-MINACE filters to augment segmentation of touching objects,” in Optical Pattern Recognition VIII, D. P. Casasent, T. Chao, eds. Proc. SPIE3073, 354–363 (1997). [CrossRef]
  3. B. V. K. Vijaya Kumar, A. Mahalanobis, A. Takessian, “Optimal tradeoff circular harmonic function correlation filter methods providing controlled in-plane rotation,” IEEE Trans. Image Process. 9, 1025–1034 (2000). [CrossRef]
  4. C. F. Hester, D. Casasent, “Multivariant technique for multiclass pattern recognition,” Appl. Opt. 19, 1758–1761 (1980). [CrossRef] [PubMed]
  5. B. V. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773–4801 (1992). [CrossRef]
  6. A. Mahalanobis, B. V. K. Vijaya Kumar, S. Song, S. R. F. Sims, J. F. Epperson, “Unconstrained correlation filters,” Appl. Opt. 33, 3751–3759 (1994). [CrossRef] [PubMed]
  7. D. L. Flannery, J. L. Horner, “Fourier optical signal processors,” Proc. IEEE 77, 1511–1527 (1989). [CrossRef]
  8. A. Mahalanobis, A. Forman, M. Bower, N. Day, R. F. Cherry, “A quadratic distance classifier for multi-class SAR ATR using correlation filters,” in Ultrahigh Resolution Radar, R. S. Vickers, ed. Proc. SPIE1875, 84–95 (1993). [CrossRef]
  9. K. Fukunaga, Statistical Pattern Recognition (Academic, San Diego, Calif., 1990).
  10. G. L. Sicoranza, “Quadratic filters for signal processing,” Proc. IEEE 80, 1263–1285 (1992). [CrossRef]
  11. T. M. Cover, “Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition,” IEEE Trans. Electron. Comput. EC-14, 326–334 (1965). [CrossRef]
  12. A. VanderLugt, F. B. Rotz, “The use of film nonlinearities in optical spatial filtering,” Appl. Opt. 1, 215–222 (1970).
  13. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989). [CrossRef] [PubMed]
  14. Ph. Réfrégier, V. Laude, “Nonlinear joint transform correlation: an optimal solution for adaptive image discrimination and input noise robustness,” Opt. Lett. 19, 405–407 (1994).
  15. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef] [PubMed]
  16. Q. Tang, B. Javidi, “Sensitivity of the nonlinear joint transform correlator: experimental investigations,” Appl. Opt. 31, 4016–4024 (1992). [CrossRef] [PubMed]
  17. A. Mahalanobis, B. V. K. Vijaya Kumar, “Polynomial filters for higher order and multi-input information fusion,” in 11th Euro American Opto-Electronic Information Processing Workshop, Spain, June1997, pp. 221–231.
  18. K. Al-Mashouq, B. V. K. Vijaya Kumar, M. Alkanhal, “Analysis of signal-to-noise ratio of polynomial correlation filters,” in Optical Pattern Recognition X, D. P. Casasent, T. Chao, eds. Proc. SPIE3715, 407–413 (1999). [CrossRef]
  19. Three Class Public MSTAR data set (CD version), Released for Defense Advanced Research Projects Agency (DARPA) by Veda Incorporated, the Dayton Group, 1997.
  20. A. Mahalanobis, B. V. K. Vijaya Kumar, S. R. F. Sims, “Distance classifier correlation filters for distortion tolerance, discrimination, and clutter rejection,” in Photonics for Processors, Neural Networks, and Memories, J. L. Horner, B. Javidi, S. T. Kowel, W. J. Miceli, eds. Proc. SPIE2026, 325–337 (1993). [CrossRef]
  21. A. Mahalanobis, D. W. Carlson, B. V. K. Vijaya Kumar, S. R. F. Sims, “Distance classifier correlation filters,” in Hybrid Image and Signal Processing IV, D. P. Casasent, A. G. Tescher, eds. Proc. SPIE2238, 2–13 (1994). [CrossRef]
  22. A. Mahalanobis, D. W. Carlson, B. V. K. Vijaya Kumar, “Evaluation of MACH and DCCF correlation filters for SAR ATR using MSTAR public data base,” in Algorithms for Synthetic Aperture Radar Imagery V, E. G. Zelnio, ed. Proc. SPIE3370, 460–469 (1998). [CrossRef]
  23. A. Mahalanobis, L. Ortiz, B. V. K. Vijaya Kumar, “Performance of the MACH/DCCF algorithms on the 10-class public release MSTAR data set,” in Algorithms for Synthetic Aperture Radar Imagery VI, E. G. Zelnio, ed. Proc. SPIE3721, 285–291 (1999). [CrossRef]
  24. A. Mahalanobis, L. Ortiz, B. V. K. Vijaya Kumar, A. Ezekiel, “Correlation ATR performance using Xpatch (synthetic) training data,” in Algorithms for Synthetic Aperture Radar Imagery VII, E. G. Zelnio, ed. Proc. SPIE4053, 340–343 (2000). [CrossRef]
  25. A. Mahalanobis, A. V. Forman, N. Day, M. Bower, R. Cherry, “Multiclass SAR ATR using shift-invariant correlation filters,” Pattern Recogn. 27, 619–626 (1994). [CrossRef]
  26. A. Mahalanobis, B. V. K. Vijaya Kumar, S. R. F. Sims, “Distance-classifier correlation filters for multiclass target recognition,” Appl. Opt. 35, 3127–3133 (1996). [CrossRef] [PubMed]
  27. L. M. Kaplan, R. M. E. Asika, K. N. Namuduri, “Effect of signal-to-clutter ratio on template-based ATR,” in Algorithms for Synthetic Aperture Radar Imagery V, E. G. Zelnio, ed. Proc. SPIE3370, 408–419 (1998). [CrossRef]
  28. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University, New York, 1993).
  29. W. H. Beyer, CRC Standards Mathematical Tables and Formulae (CRC Press, Boca Raton, Florida, 1991).
  30. M. Alkanhal, B. V. K. Vijaya Kumar, A. Mahalanobis, “Combining multiple correlators using neural networks,” in Optical Pattern Recognition VIII, D. P. Casasent, T. Chao, eds. Proc. SPIE3073, 398–403 (1997). [CrossRef]
  31. K. Al-Ghoneim, “Learning ranks for pattern recognition,” Ph.D. dissertation (Carnegie Mellon University, Pittsburgh, 1996).
  32. K. S. Fu, “A step towards unification of syntactic and statistical pattern recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 5, 200–205 (1983).
  33. E. Mandler, J. Schuermann, “Combining the classification results of independent classifiers based on the Dempster/Shafer theory of evidence,” in Pattern Recognition and Artificial Intelligence: Towards an Integration, E. S. Gelsema, L. N. Kanal, eds. (North-Holland, Amsterdam, 1988), pp. 381–393.
  34. T. K. Ho, J. J. Hull, S. N. Srihari, “Decision combination in multiple classifier systems,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 66–75 (1994). [CrossRef]
  35. User’s Manual for Xpatch, DEMACO Inc., 1995 (DEMACO Inc. purchased by Science Applications International Corporation, San Diego, Calif., 1999.)
  36. R. Duda, P. Hart, D. Stork, Pattern Classification (Wiley, New York, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited