OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 23 — Aug. 10, 2003
  • pp: 4736–4746

A miniature photorefractive circuit for principal component extraction

Edeline Fotheringham and Dana Z. Anderson  »View Author Affiliations

Applied Optics, Vol. 42, Issue 23, pp. 4736-4746 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (472 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical feature extractor is a photorefractive ring oscillator that can identify the strongest spatio-temporal component of its input space. The theoretical sections discuss the design and performance limitations of the signal extractor. A simple model of the filter’s nonlinear functioning enables the reader to go directly to the experimental section that describes the making of the filter and experimental results. The device, also called the auto-tuning filter, is 5 cm2 in size, has a 3 GHz processing bandwidth, and requires less than 5 mW of continuous optical power to operate.

© 2003 Optical Society of America

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(090.7330) Holography : Volume gratings
(100.5010) Image processing : Pattern recognition
(190.5330) Nonlinear optics : Photorefractive optics
(190.7070) Nonlinear optics : Two-wave mixing
(230.4320) Optical devices : Nonlinear optical devices

Original Manuscript: March 25, 2003
Published: August 10, 2003

Edeline Fotheringham and Dana Z. Anderson, "A miniature photorefractive circuit for principal component extraction," Appl. Opt. 42, 4736-4746 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. T. Jolliffe, Principal Component Analysis (Springer-Verlag, Berlin, 1996).
  2. D. Z. Anderson, V. Damiao, E. Fotheringham, D. Popovic, S. Romish, A. Sullivan, Z. Popovic, “Optical processor for X-band lens antenna arrays,” in IEEE Microwave Theory & Techniques-Symposium, Boston, Mass. (2000).
  3. P. Comon, “Independent component analysis, a new concept,” Signal Process. 36, 287–314 (1994). [CrossRef]
  4. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley Series in Pure and Applied Optics, New York, 1993).
  5. R. K. Jain, G. J. Dunning, “Spatial and temporal properties of a continuous-wave phase-conjugate resonator based on the photorefractive crystal BaTiO3,” Opt. Lett. 7, 420–422 (1982). [CrossRef] [PubMed]
  6. J. O. White, M. Croningolomb, B. Fischer, A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450–452 (1982). [CrossRef]
  7. M. Croningolomb, A. Yariv, “Plane-wave theory of non-degenerate oscillation in the linear photorefractive passive phase-conjugate mirror,” Opt. Lett. 11, 242–244 (1986). [CrossRef]
  8. S. K. Kwong, M. Croningolomb, A. Yariv, “Oscillation with photorefractive gain,” IEEE J. Quantum Electron. 22, 1508–1523 (1986). [CrossRef]
  9. L. K. Dai, Y. S. Gou, P. Yeh, C. Gu, “Photorefractive mode-coupling between two unidirectional ring oscillators,” Appl. Phys. B 53, 153–159 (1991). [CrossRef]
  10. G. Dalessandro, “Spatiotemporal dynamics of a unidirectional ring oscillator with photorefractive gain,” Phys. Rev. A 46, 2791–2802 (1992). [CrossRef]
  11. L. Dambly, H. Zeghlache, “Theory of a multimode photorefractive oscillator—quantitative results on the frequency shift,” Phys. Rev. A 49, 4043–4054 (1994). [CrossRef] [PubMed]
  12. M. Kaczmarek, R. W. Eason, “Conditions for efficient build-up of power in photorefractive ring cavities,” Opt. Commun. 154, 334–338 (1998). [CrossRef]
  13. O. Sandfuchs, J. Leonardy, F. Kaiser, M. R. Belic, “Spatio-temporal dynamics in photorefractive two-wave mixing configurations: the counterpropagating geometry and the unidirectional ring oscillator,” Chaos Solitons Fractals 10, 709–724 (1999).
  14. P. Gunter, J. P. Huignard, “Photorefractive materials and their applications,” Top. Appl. Phys. 61, 62 (1988).
  15. J. O. White, A. Yariv, “Photorefractive crystals as optical-devices, elements, and processors,” Proceedings of the Society of Photo-Optical Instrumentation Engineers 464, 7–20 (1984).
  16. S. K. Kwong, A. Yariv, M. Croningolomb, I. Ury, “Conversion of optical-path length to frequency by an interferometer using photorefractive oscillation,” Appl. Phys. Lett. 47, 460–462 (1985). [CrossRef]
  17. G. J. Dunning, Y. Owechko, B. H. Soffer, “Hybrid optoelectronic neural networks using a mutually pumped phase-conjugate mirror,” Opt. Lett. 16, 928–930 (1991). [CrossRef] [PubMed]
  18. Y. H. Ja, “A double-coupler optical fiber ring-loop resonator with degenerate 2-wave mixing,” Opt. Commun. 81, 113–122 (1991). [CrossRef]
  19. Y. Frauel, T. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Topological map from a photorefractive self-organizing neural network,” Opt. Commun. 135, 179–188 (1997). [CrossRef]
  20. M. S. Petrovic, M. R. Belic, M. V. Jaric, F. Kaiser, “Optical photorefractive flip-flop oscillator,” Opt. Commun. 138, 349–353 (1997). [CrossRef]
  21. M. Schwab, M. Saffman, C. Denz, T. Tschudi, “Fourier control of pattern formation in an interferometric feedback configuration,” Opt. Commun. 170, 129–136 (1999). [CrossRef]
  22. K. M. Hung, “Optical pattern recognition using a unidirectional photorefractive oscillator coupled with an angular multiplexing volume hologram,” J. Mod. Opt. 47, 655–661 (2000).
  23. A. Desfarges-Berthelemot, V. Kermene, B. Colombeau, M. Vampouille, C. Froehly, “Intracavity beam shaping and referenceless holography,” Opt. Mat. 18, 27–35 (2001). [CrossRef]
  24. M. Saffman, C. Benkert, D. Z. Anderson, “Self-organizing photorefractive frequency demultiplexer,” Opt. Lett. 16, 1993–1995 (1991). [CrossRef] [PubMed]
  25. D. Z. Anderson, C. Benkert, V. Hebler, J. Jang, D. Montgomery, M. Saffman, “Optical implementation of a self-organizing feature extractor,” Advances in Neural Information Processing Systems IV (1992).
  26. D. Z. Anderson, M. Saffman, A. Hermanns, “Manipulating the information carried by an optical beam with reflexive photorefractive beam coupling,” J. Opt. Soc. Am. B 12, 117–123 (1995). [CrossRef]
  27. A. A. Zozulya, M. Saffman, D. Z. Anderson, “Stability analysis of two photorefractive ring resonator circuits: the flip-flop and the feature extractor,” J. Opt. Soc. Am. B 12, 1036–1047 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited