OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 23 — Aug. 10, 2003
  • pp: 4758–4764

Efficient Compression of Fresnel Fields for Internet Transmission of Three-Dimensional Images

Thomas J. Naughton, John B. McDonald, and Bahram Javidi  »View Author Affiliations


Applied Optics, Vol. 42, Issue 23, pp. 4758-4764 (2003)
http://dx.doi.org/10.1364/AO.42.004758


View Full Text Article

Acrobat PDF (879 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compress phase-shift digital holograms (whole Fresnel fields) for the transmission of three-dimensional images. For real-time networking applications, the time required to compress can be as critical as the compression rate. We achieve lossy compression through quantization of both the real and imaginary streams, followed by a bit packing operation. Compression losses in the reconstructed objects were quantified. We define a speedup metric that combines space gains due to compression with temporal overheads due to the compression routine and the transmission serialization. We empirically verify transmission speedup due to compression using a special-purpose Internet-based networking application.

© 2003 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(100.0100) Image processing : Image processing
(100.2000) Image processing : Digital image processing
(100.6890) Image processing : Three-dimensional image processing

Citation
Thomas J. Naughton, John B. McDonald, and Bahram Javidi, "Efficient Compression of Fresnel Fields for Internet Transmission of Three-Dimensional Images," Appl. Opt. 42, 4758-4764 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-23-4758


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
  2. L. P. Yaroslavsky and N. S. Merzlyakov, Methods of Digital Holography (Consultants Bureau, New York, 1980).
  3. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).
  4. U. Schnars and W. P. O. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
  5. T.-C. Poon and A. Korpel, “Optical transfer function of an acousto-optic heterodyning image processor,” Opt. Lett. 4, 317–319 (1979).
  6. J. Schwider, B. Burow, K. E. Elsner, J. Grzanna, and R. Spolaczyk, “Digital wavefront measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983).
  7. L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
  8. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
  9. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610–612 (2000).
  10. B. Javidi and F. Okano, eds., Three-Dimensional Television, Video, and Display Technologies (Springer, Berlin, 2002).
  11. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132 (2002).
  12. H. J. Caulfield, ed., Handbook of Optical Holography (Academic, New York, 1979).
  13. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  14. M. Sutkowski and M. Kujawinska, “Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
  15. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
  16. M. Rabbani, ed., Selected Papers on Image Coding and Compression, SPIE Milestone Series MS48, (SPIE Press, Bellingham, Wa., 1992).
  17. T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, “Digital holographic data reconstruction with data compression,” Algorithms and Systems for Optical Information Processing V, B. Javidi and D. Psaltis, eds., Proc. SPIE 4471, 235–242 (2001).
  18. L. Ding, Y. Yan, Q. Xue, and G. Jin, “Wavelet packet compression for volume holographic image recognition,” Opt. Commun. 216, 105–113 (2003).
  19. M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003).
  20. J. W. Goodman and A. M. Silvestri, “Some effects of Fourier domain phase quantization,” IBM J. Res. Dev. 14, 478–484 (1970).
  21. W. J. Dallas and A. W. Lohmann, “Phase quantization in holograms,” Appl. Opt. 11, 192–194 (1972).
  22. E. Tajahuerce, O. Matoba, and B. Javidi, “Shift-invariant three-dimensional object recognition by means of digital holography,” Appl. Opt. 40, 3877–3886 (2001).
  23. Y. Frauel, E. Tajahuerce, M.-A. Castro, and B. Javidi, “Distortion-tolerant three-dimensional object recognition with digital holography,” Appl. Opt. 40, 3887–3893 (2001).
  24. Y. Frauel and B. Javidi, “Neural network for three-dimensional object recognition based on digital holography,” Opt. Lett. 26, 1478–1480 (2001).
  25. http://hologram.cs.may.ie/online/jao2003/hologram.html

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited