OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 24 — Aug. 20, 2003
  • pp: 4827–4834

Interferometric Analysis of Reorientational Nonlinear Phenomena at 10.6 µm in a Nematic Liquid Crystal

Enrico Allaria, Stefano Brugioni, Sergio De Nicola, Pietro Ferraro, Simonetta Grilli, and Riccardo Meucci  »View Author Affiliations

Applied Optics, Vol. 42, Issue 24, pp. 4827-4834 (2003)

View Full Text Article

Acrobat PDF (1053 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe an infrared interferometric technique based on a two-dimensional spatial fringe analysis Fourier method for investigating the characteristic ring diffraction pattern generated by the self-phase-modulation effect induced in nematic liquid crystals (NLCs) by an infrared laser beam and for measuring the nonlinear refractive index of the NLCs. The experimental setup employs a Mach-Zehnder interferometer with a cw CO2 laser emitting at 10.6 μm and a pyroelectric optoelectronic sensor matrix to detect the modulated ring-pattern intensity distribution formed in the far field by a nematic E7 sample. A Fourier-transform-based analysis of the interference fringe pattern allows comparison of the measurements with the theoretical ring-pattern intensity distribution. We show that accurate determination of the nonlinear refractive index can be obtained by analyzing the two-dimensional phase distribution of the modulated ring pattern.

© 2003 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(070.5010) Fourier optics and signal processing : Pattern recognition
(100.2650) Image processing : Fringe analysis
(110.3080) Imaging systems : Infrared imaging
(160.3710) Materials : Liquid crystals

Enrico Allaria, Stefano Brugioni, Sergio De Nicola, Pietro Ferraro, Simonetta Grilli, and Riccardo Meucci, "Interferometric Analysis of Reorientational Nonlinear Phenomena at 10.6 µm in a Nematic Liquid Crystal," Appl. Opt. 42, 4827-4834 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
  2. F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, Singapore, 1997).
  3. A. S. Zolot’ko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Csillag, “Freedericsz transition in MBBA crystal due to a light wave field,” JETP Lett. 34, 250–254 (1981).
  4. J. C. Khoo, S. L. Zhuang, and S. Shepard, “Self-focusing of a low power cw laser beam via optically induced birefringence in a nematic liquid-crystal film,” Appl. Phys. Lett. 39, 937–940 (1981).
  5. C. Khoo, T. H. Liu, and P. Y. Yan, “Nonlocal radial dependence of laser-induced molecular reorientation in a nematic liquid crystal: theory and experiment,” J. Opt. Soc. Am. B 4, 115–120 (1987).
  6. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic-liquid-crystal film,” Opt. Lett. 6, 411–413 (1981).
  7. C. Khoo, J. Y. Hou, T. H. Liu, P. Y. Yan, R. R. Michael, and G. M. Finn, “Transverse self-phase modulation and bistability in the transmission of a laser beam through a nonlinear thin film,” J. Opt. Soc. Am. B 4, 886–891 (1987).
  8. W. K. Bajdecki, L. Calero, and R. Meucci, “Nonlinear infrared optical measurements of elastic constants in a nematic liquid crystal,” Opt. Commun. 176, 473–477 (2000).
  9. L. Calero, W. K. Bajdecki, and R. Meucci, “Reorientation effect induced by a CW CO2 laser in nematic liquid crystals,” Opt. Commun. 168, 201–206 (1999).
  10. S. Brugioni and R. Meucci, “Self-phase modulation in a nematic liquid crystal film induced by a low-power CO2 laser,” Opt. Commun. 206, 445–451 (2002).
  11. D. De Feo, S. De Nicola, P. Ferraro, P. Maddalena, and G. Pierattini, “A Fourier-transform-based interferometric technique for measuring the elastic anisotropy of a nematic liquid crystal,” Pure Appl. Opt. 7, 1301–1308 (1998).
  12. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  14. S. De Nicola and P. Ferraro, “A two-dimensional fast Fourier transform method for measuring the inclination angle of parallel fringe patterns,” Opt. Laser Technol. 30, 167–173 (1998).
  15. I. H. Takeda and S. Kobayashy, “Fourier-transform method of fringe-pattern analysis for computed-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
  16. T. Kreiss, Computer-Aided Evaluation of Holographic Interferograms Holographic Interferometry, P. K. Rastogy, eds. (Springer, Berlin, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited