OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 24 — Aug. 20, 2003
  • pp: 4835–4840

Method for measuring small optical absorption coefficients with use of a Shack-Hartmann wave-front detector

Sanichiro Yoshida, David H. Reitze, David B. Tanner, and Justin D. Mansell  »View Author Affiliations


Applied Optics, Vol. 42, Issue 24, pp. 4835-4840 (2003)
http://dx.doi.org/10.1364/AO.42.004835


View Full Text Article

Enhanced HTML    Acrobat PDF (105 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method for measuring absorption at the 1 × 10-5 cm-1 level in high-quality optical materials. Using a Shack-Hartmann wave-front detector, thermal lensing in these materials may be measured. Then, the absorption coefficient may be estimated by fitting the observed deformation to a thermal lensing model based on the temperature dependences of the refractive index and the thermal expansion coefficient. For a particular sample of fused silica, the absorption coefficient was determined to be 1.8 ± 0.4 × 10-5 cm-1. Obtaining this result requires a resolution in the optical path length better than ±0.1 nm.

© 2003 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.6030) Materials : Silica
(260.3060) Physical optics : Infrared
(350.6830) Other areas of optics : Thermal lensing

History
Original Manuscript: January 28, 2003
Revised Manuscript: May 16, 2003
Published: August 20, 2003

Citation
Sanichiro Yoshida, David H. Reitze, David B. Tanner, and Justin D. Mansell, "Method for measuring small optical absorption coefficients with use of a Shack-Hartmann wave-front detector," Appl. Opt. 42, 4835-4840 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-24-4835


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Abramovici, W. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “The Laser Interferometer Gravitational-wave Observatory,” Science 256, 325–333 (1992). [CrossRef] [PubMed]
  2. K. Strain, K. Danzmann, J. Mizuno, P. Nelson, A. Rüdiger, R. Schilling, W. Winkler, “Thermal lensing in recycling interferometric gravitational wave detectors,” Phys. Lett. A. 194, 124–132 (1994). [CrossRef]
  3. D. E. McClelland, J. B. Camp, J. Mason, W. Kells, S. E. Whitcomb, “Arm cavity resonant sideband control for laser interferometric gravitational wave detectors,” Opt. Lett. 24, 1014–1016 (1999). [CrossRef]
  4. Claude Boccara, Laboratoire d’Optique Physique, Paris, France (private communication, 1998).
  5. D. Bunimovich, E. Belotserkovsky, L. Nagli, A. Katzir, “Measurements of absorption coefficients using noncontact fiber-optic laser calorimetry,” Appl. Opt. 34, 743–745 (1995). [CrossRef] [PubMed]
  6. D. Bunimovich, L. Nagli, A. Katzir, “Absorption measurements of mixed silver halide crystals and fibers by laser calorimetry,” Appl. Opt. 33, 117–119 (1994). [CrossRef] [PubMed]
  7. D. R. Neal, D. J. Armstrong, W. T. Turner, “Wavefront sensors for control and processing monitoring in optics manufacture,” in Laser as Tool for Manufacturing II, L. R. Migliore, R. D. Schaeffer, eds., Proc. SPIE2993, 211–220 (1997). [CrossRef]
  8. J. D. Mansell, J. Hennawi, E. K. Gustafson, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor,” Appl. Opt. 40, 366–374 (2001). [CrossRef]
  9. CLAS2D Operation Manual, Revision 1.50a (WaveFront Sciences, Inc., Albuquerque, N. Mex., 1999), p. 69.
  10. Quartz Glass for Optics, Optical Properties (Heraeus, Hanau, Germany, 1994).
  11. See for example, A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1976), chaps. 2 and 3.
  12. Darren Armstrong, WaveFront Sciences, Inc., 14810 Central Avenue NW, Albuquerque, N. Mex. 87123-3905 (private communication, 1998).
  13. R. Beausoleil, Edward L. Ginzton Laboratory, Stanford University, Stanford, Calif. 94305 (private communication, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited