OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 24 — Aug. 20, 2003
  • pp: 4867–4870

Nd:YLF Laser at 1.3 µm for Calcium Atom Optical Clocks and Precision Spectroscopy of Hydrogenic Systems

Yann Louyer, Mark D. Plimmer, Patrick Juncar, Marc E. Himbert, François Balembois, and Patrick Georges  »View Author Affiliations

Applied Optics, Vol. 42, Issue 24, pp. 4867-4870 (2003)

View Full Text Article

Acrobat PDF (94 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe single-frequency operation of a diode-pumped Nd:YLF laser in the range 1311.9–1317.2 nm. It can be used for the interrogation of the clock transition in calcium (1314.0 nm) or spectroscopy in hydrogen and metastable singly ionized helium (1312.6 nm). By using a twisted-mode cavity, we have obtained output powers of 830 and 970 mW at 1312.6 and 1314.0 nm, respectively, in a single longitudinal mode.

© 2003 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

Yann Louyer, Mark D. Plimmer, Patrick Juncar, Marc E. Himbert, François Balembois, and Patrick Georges, "Nd:YLF Laser at 1.3 µm for Calcium Atom Optical Clocks and Precision Spectroscopy of Hydrogenic Systems," Appl. Opt. 42, 4867-4870 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, “Quantum projection noise in an atomic fountain: a high stability cesium frequency standard,” Phys. Rev. Lett. 82, 4619–4622 (1999).
  2. R. W. Barger, “Influence of second-order Doppler effect on optical Ramsey fringe profiles,” Opt. Lett. 6, 145–147 (1981).
  3. C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: subkilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
  4. Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurement of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
  5. S. A. Burrows, S. Guérandel, E. A. Hinds, F. Lison, and M. G. Boshier, “Progress towards a precise measurement of the He+ 2S Lamb shift,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Inguscio, and T. W. Hänsch, eds. (Springer-Verlag, Berlin, 2001), pp. 303–313.
  6. A. van Wijngaarden, J. Kwela, and G. W. F. Drake, “Measurement of the n = 2 Lamb shift in the He+ by the anisotropy method,” Phys. Rev. A 43, 3325–3342 (1991).
  7. A. van Wijngaarden, F. Holuj, and G. W. F. Drake, “Lamb shift in He+: resolution of a discrepancy between theory and experiment,” Phys. Rev. A 63, 012505(1)–012505(11) (2000).
  8. M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
  9. S. Bourzeix, B. de Beauvoir, F. Nez, M. D. Plimmer, F. de Tomasi, L. Julien, F. Biraben, and D. N. Stacey, “High resolution spectroscopy of the hydrogen atom: determination of the 1S Lamb shift,” Phys. Rev. Lett. 76, 384–387 (1996).
  10. L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, and G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
  11. Y. Louyer, F. Balembois, T. Badr, M. D. Plimmer, P. Juncar, M. E. Himbert, and P. Georges, “Diode-pumped solid-state lasers for a silver atom optical clock,” in Poster Presentation Abstracts of the 18th International Conference on Atomic Physics, H. R. Sadeghpour, D. E. Pritchard, and E. J. Heller, eds. (World Scientific, Singapore, 2002), p. 145.
  12. Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, and M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
  13. G. Uhlenberg, J. Dirscherl, and H. Walther, “Magneto-optical trapping of silver atoms,” Phys. Rev. A 62, 0634041–0634044 (2000).
  14. www.polysci.com. This website, owned by Northrop Grumman Space Technology Synoptics (formerly Poly-Scientific), includes absorption spectra for a number of common laser crystals.
  15. V. Evtuhov and A. Siegman, “A twisted-mode technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt. 4, 142 (1965).
  16. D. A. Dragaert, “Single-longitudinal-mode Nd:YAG laser,” in Digest of Technical Papers of the IEEE Conference on Laser Engineering and Applications, (Optical Society of America, Washington, D.C., 1971), p. 42.
  17. K. Wallmeroth and P. Peuser, “High power, CW single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
  18. M. W. Hamilton, “An introduction to stabilized lasers,” Contemp. Phys. 30, 21–33 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited