OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 24 — Aug. 20, 2003
  • pp: 4877–4882

Broadband, continuous, and fine-tune properties of external-cavity thermoelectric-stabilized mid-infrared quantum-cascade lasers

Chuan Peng, Guipeng Luo, and Han Q. Le  »View Author Affiliations


Applied Optics, Vol. 42, Issue 24, pp. 4877-4882 (2003)
http://dx.doi.org/10.1364/AO.42.004877


View Full Text Article

Acrobat PDF (551 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Continuous, broad, and single-mode wavelength tuning of thermoelectrically cooled short-pulse quantum-cascade lasers is demonstrated with a combination of coarse grating tuning and fine phase tuning of the gain element. This approach overcomes the problem of a poor facet antireflection coating of the gain chip by shifting a Fabry-Perot longitudinal mode to coincide with the desired grating-selected wavelength. The 9-µm laser was tested with NH3 gas absorption and showed fine frequency tuning at a rate of 31 MHz/step and a time-averaged linewidth of 500–750 MHz. The total tuning range was 9.08–9.36 µm and was limited only by the intrinsic gain of the device.

© 2003 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3600) Lasers and laser optics : Lasers, tunable
(300.6360) Spectroscopy : Spectroscopy, laser

History
Original Manuscript: January 24, 2003
Revised Manuscript: April 26, 2003
Published: August 20, 2003

Citation
Chuan Peng, Guipeng Luo, and Han Q. Le, "Broadband, continuous, and fine-tune properties of external-cavity thermoelectric-stabilized mid-infrared quantum-cascade lasers," Appl. Opt. 42, 4877-4882 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-24-4877


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. See, e.g., M.-C. Amann, J. Buus, Tunable Laser Diodes (Artech House, Norwood, Mass., 1998).
  2. H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y. H. Zhang, “Broad wavelength tunability of grating-coupled external cavity midinfrared semiconductor lasers,” Appl. Phys. Lett. 69, 2804–2806 (1996). [CrossRef]
  3. H. Q. Le, G. W. Turner, J. R. Ochoa, M. J. Manfra, C. C. Cook, Y.-H. Zhang, “External cavity mid-infrared semiconductor lasers,” in In-Plane Semiconductor Lasers: from Ultraviolet to Midinfrared, H. K. Choi, P. S. Zory, eds., Proc. SPIE3001, 298–308 (1997).
  4. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001). [CrossRef]
  5. G. Luo, C. Peng, H. Q. Le, S.-S. Pei, H. Lee, W.-Y. Hwang, B. Ishaug, J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002). [CrossRef]
  6. M. Beck, D. Hofstetter, Th. Allen, J. Faist, E. Gini, “Continuous wave operation of quantum cascade lasers at room temperature,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 180–181.
  7. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade lasers,” Science 264, 553–556 (1994). [CrossRef] [PubMed]
  8. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997). [CrossRef]
  9. For additional information see, e.g., J. Faist, “External cavity quantum cascade lasers,” http://www.unine.ch/phys/meso/ec/ec.html .
  10. R. F. Curl, F. K. Tittel, “Tunable infrared laser spectroscopy,” Annu. Rep. Prog. Chem. Sect. C 98, 217–270 (2002). [CrossRef]
  11. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,” Appl. Opt. 39, 4425–4430 (2000). [CrossRef]
  12. B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000). [CrossRef]
  13. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996). [CrossRef] [PubMed]
  14. S. W. Sharpe, J. F. Kelly, J. S. Hartman, R. Williams, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Characterization of quantum cascade lasers,” , http://collaboratory.emsl.pnl.gov/docs/csd/annual_report1999/1578b_6a.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited