OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 24 — Aug. 20, 2003
  • pp: 4922–4936

Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of AX excitation schemes

Wolfgang G. Bessler, Christof Schulz, Tonghun Lee, Jay B. Jeffries, and Ronald K. Hanson  »View Author Affiliations


Applied Optics, Vol. 42, Issue 24, pp. 4922-4936 (2003)
http://dx.doi.org/10.1364/AO.42.004922


View Full Text Article

Enhanced HTML    Acrobat PDF (238 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced fluorescence (LIF) has proven a reliable technique for nitric oxide (NO) diagnostics in practical combustion systems. However, a wide variety of different excitation and detection strategies are proposed in the literature without giving clear guidelines of which strategies to use for a particular diagnostic situation. We give a brief review of the high-pressure NO LIF diagnostics literature and compare strategies for exciting selected transitions in the AX(0, 0), (0, 1), and (0, 2) bands using a different detection bandpass. The strategies are compared in terms of NO LIF signal strength, attenuation of laser and signal light in the hot combustion gases, signal selectivity against LIF interference from O2 and CO2, and temperature and pressure sensitivity of the LIF signal. The discussion is based on spectroscopic measurements in laminar premixed methane-air flames at pressures between 1 and 60 bars and on NO and O2 LIF spectral simulations.

© 2003 Optical Society of America

OCIS Codes
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced

History
Original Manuscript: January 21, 2003
Revised Manuscript: May 16, 2003
Published: August 20, 2003

Citation
Wolfgang G. Bessler, Christof Schulz, Tonghun Lee, Jay B. Jeffries, and Ronald K. Hanson, "Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X excitation schemes," Appl. Opt. 42, 4922-4936 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-24-4922


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).
  2. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994). [CrossRef]
  3. K. Kohse-Höinghaus, J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, New York, 2002).
  4. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0, 0) excitation,” Appl. Opt. 41, 3547–3557 (2002). [CrossRef] [PubMed]
  5. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0, 1) excitation,” Appl. Opt. 42, 2031–2042 (2003). [CrossRef] [PubMed]
  6. C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced fluorescence detection of nitric oxide in high-pressure flames with A–X(0, 2) excitation,” Appl. Opt. 36, 3227–3232 (1997). [CrossRef] [PubMed]
  7. C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999). [CrossRef]
  8. A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A–X(0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992). [CrossRef]
  9. M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NO (0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994). [CrossRef]
  10. M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO (0, 0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994). [CrossRef]
  11. A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A-X(0, 0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995). [CrossRef]
  12. R. Zhang, D. R. Crosley, “Temperature dependent quenching of A 2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995). [CrossRef]
  13. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO A2Σ+ (v′ = 0),” Chem. Phys. Lett. 259, 508–541 (1996). [CrossRef]
  14. M. C. Drake, J. W. Ratcliffe, “High temperature quenching cross sections for nitric oxide laser-induced fluorescence measurements,” J. Chem. Phys. 98, 3850–3865 (1993). [CrossRef]
  15. J. W. Thoman, J. A. Gray, J. L. Durant, P. H. Paul, “Collisional electronic quenching of NO A2Σ+ by N2 from 300 to 4500 K,” J. Chem. Phys. 97, 8156–8163 (1992). [CrossRef]
  16. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993). [CrossRef]
  17. M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH (A), OH A, and NO (A) in low-pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998). [CrossRef]
  18. P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quencing cross-section,” (Sandia National Laboratories, Livermore, Calif., 1994).
  19. R. S. Barlow, J. H. Frank, “Effects of turbulence on species mass fractions in methane/air jet flames,” Proc. Combust. Inst. 27, 1087–1095 (1998). [CrossRef]
  20. F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001). [CrossRef]
  21. C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002). [CrossRef]
  22. W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002). [CrossRef]
  23. C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2743 (2002). [CrossRef]
  24. M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF Spectroscopy of NO and O2 in high-pressure flames,” Combust. Sci. Technol. 118, 257–283 (1996). [CrossRef]
  25. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Carbon dioxide UV laser-induced fluorescence in high-pressure flames,” Chem. Phys. Lett. 375, 344–349 (2003). [CrossRef]
  26. A. Cialolo, R. Barbella, A. Tregrossi, L. Bonfanti, “Spectroscopic and compositional signatures of PAH-loaded mixtures in the soot inception region of a premixed ethylene flame,” Proc. Combust. Inst. 27, 1481–1487 (1998).
  27. P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995). [CrossRef]
  28. M. Hofmann, W. G. Bessler, C. Schulz, H. Jander, “Laser-induced incandescence for soot diagnostics at high pressure,” Appl. Opt., 4252052–2062 (2003). [CrossRef]
  29. A. M. Wodtke, M. Huwel, H. Schluter, G. Meijer, P. Andresen, H. Voges, “High-sensitivity detection of NO in a flame using a tunable ArF laser,” Opt. Lett. 13, 910–912 (1988). [CrossRef] [PubMed]
  30. M. Versluis, M. Ebben, M. Drabbels, J. J. ter Meulen, “Frequency calibration in the ArF excimer laser-tuning range using laser-induced fluorescence of NO,” Appl. Opt. 30, 5229–5234 (1991). [CrossRef] [PubMed]
  31. P. Andresen, G. Meijer, H. Schluter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990). [CrossRef] [PubMed]
  32. A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” Proc. Combust. Inst. 24, 1605–1612 (1992). [CrossRef]
  33. A. Arnold, A. Bräumer, A. Buschmann, M. Decker, F. Dinkelacker, T. Heitzmann, A. Orth, M. Schäfer, V. Sick, J. Wolfrum, “2D-diagnostics in industrial devices,” Ber. Bunsenges. Phys. Chem 97, 1650–1661 (1993). [CrossRef]
  34. T. M. Brugmann, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and Diesel-fuel-driven Diesel engine,” Appl. Phys. B 57, 405–410 (1993). [CrossRef]
  35. T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. t. Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997). [CrossRef]
  36. N. Dam, W. L. Meerts, J. J. ter Meulen, “Laser diagnostics of nitric oxide inside a two-stroke DI Diesel engine,” in Laser Techniques Applied to Fluid Mechanics: Selected Papers from the Ninth International Symposium, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (Springer-Verlag, New York, 2000), chap. 7. [CrossRef]
  37. G. G. M. Stoffels, E.-J. van den Boom, C. M. I. Spaanjaars, N. Dam, W. L. Meerts, J. J. ter Meulen, J. L. C. Duff, D. J. Rickeard, “In-cylinder measurements of NO formation in a Disel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1999).
  38. T. Tanaka, M. Fujimoto, M. Tabata, “Planar measurements of NO in an S.I. engine based on laser induced fluorescence,” (Society of Automotive Engineers, Warrendale, Pa., 1997).
  39. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993). [CrossRef] [PubMed]
  40. J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995). [CrossRef]
  41. D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Modeling of NO formation in premixed, high-pressure methane flames,” Combust. Flame 119, 307–318 (1999). [CrossRef]
  42. J. E. Dec, R. E. Canaan, “PLIF imaging of NO formation in a DI Diesel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1998).
  43. B. Alatas, J. A. Pinson, T. A. Litzinger, D. A. Santavicca, “A study of NO and soot evolution in a DI Diesel engine via planar imaging,” (Society of Automotive Engineers, Warrendale, Pa., 1993).
  44. A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” (Society of Automotive Engineers, Warrendale, Pa., 1995).
  45. T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992). [CrossRef]
  46. B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995). [CrossRef]
  47. E.-J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen. “Laser diagnostics in a Diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–600 (2001). [CrossRef]
  48. H. Nakagawa, H. Endo, Y. Deguchi, M. Noda, H. Oikawa, T. Shimada, “NO measurement in Diesel spray flame using laser induced fluorescence,” (Society of Automotive Engineers, Warrendale, Pa., 1997).
  49. M. C. Drake, J. W. Ratcliffe, R. J. Blint, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of flamefront NO formation and superequilibrium radical concentrations in laminar high-pressure premixed flames,” Proc. Combust. Inst. 23, 387–395 (1990). [CrossRef]
  50. J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Laser-induced fluorescence measurements of nitric oxide in laminar C2H6/O2/N2 flames at high pressure,” Combust. Flame 92, 485–489 (1993). [CrossRef]
  51. J. R. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994). [CrossRef]
  52. J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements of nitric oxide in laminar high-temperature flames,” Energy Fuels 8, 1115–1122 (1994). [CrossRef]
  53. J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O2/N2 flames,” Combust. Flame 101, 141–152 (1995). [CrossRef]
  54. C. S. Cooper, N. M. Laurendeau, “Parametric study of NO production via quantitative laser-induced fluorescence in high-pressure, swirl-stabilized spray flames,” Proc. Combust. Inst. 28, 287–293 (2000). [CrossRef]
  55. C. S. Cooper, N. M. Laurendeau, “Comparison of laser-induced and planar laser-induced fluorescence measurements of nitric oxide in a high-pressure, swirl-stabilized, spray flame,” Appl. Phys. B 70, 903–910 (2000). [CrossRef]
  56. C. S. Cooper, N. M. Laurendeau, “Quantitative measurements of nitric oxide in high-pressure (2–5 atm), swirl-stabilized spray flames via laser-induced fluorescence,” Combust. Flame 123, 175–188 (2000). [CrossRef]
  57. D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO+H2+CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001). [CrossRef]
  58. D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames,” Appl. Opt. 36, 3244–3252 (1997). [CrossRef] [PubMed]
  59. W. P. Partridge, N. M. Laurendeau, “Formulation of a dimensionless overlap fraction to account for spectrally distributed interactions in fluorescence studies,” Appl. Opt. 34, 2645–2647 (1995). [CrossRef] [PubMed]
  60. J. R. Reisel, W. P. Partridge, N. M. Laurendeau, “Transportability of a laser-induced fluorescence calibration for NO at high pressure,” J. Quant. Spectrosc. Radiat. Transfer 53, 165–178 (1995). [CrossRef]
  61. C. S. Cooper, N. M. Laurendeau, “Laser-induced fluorescence measurements in lean direct-injection spray flames: technique development and application,” Meas. Sci. Technol. 11, 902–911 (2000). [CrossRef]
  62. W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson. “Quantitative NO-LIF imaging in high-pressure flames,” in First International Conference on Optical and Laser Diagnostics (ICOLAD) (Institute of Physics, London, 2002), pp. 97–102.
  63. A. O. Vyrodov, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A-X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B. 61, 409–414 (1995). [CrossRef]
  64. P. Jamette, P. Desgroux, V. Ricordeau, B. Deschamps, “Laser-induced fluorescence detection of NO in the combustion chamber of an optical GDI engine with A-X(0, 1) excitation,” (Society of Automotive Engineers, Warrendale, Pa., 2001).
  65. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson. “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A-X(0, 1) excitation,” in Proceedings of the Western States Section of the Combustion Institute, Spring Meeting (Combustion Institute, Pittsburgh, Pa., 2001).
  66. T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in methane/air flames at pressures between 1 and 60 bar,” paper AIAA-2002-0399, presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 5–8 Jan. 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).
  67. C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995). [CrossRef]
  68. C. Schulz, V. Sick, J. Heinze, W. Stricker, “A new approach to laser-induced fluorescence detection of nitric oxide in high pressure flames,” in Laser Applications to Chemical, Biological and Environmental Analysis, Vol. 3. of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 133–135.
  69. F. Hildenbrand, C. Schulz, M. Hartmann, F. Puchner, G. Wawrschin, “In-cylinder NO-LIF imaging in a realistic GDI engine using KrF excimer laser excitation,” (Society of Automotive Engineers, Warrendale, Pa., 1999).
  70. F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. G. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” in VDI Flammentag Dresden, VDI Berichte 1492 (1999), pp. 269–274.
  71. F. Hildenbrand, C. Schulz, V. Sick, E. Wagner, “Spatially resolved investigation of light absorption in an SI engine fueled with propane/air,” Appl. Opt. 38, 1452–1458 (1999). [CrossRef]
  72. C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996). [CrossRef]
  73. W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” (Society of Automotive Engineers, Warrendale, Pa., 2001).
  74. F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” Proc. Combust. Inst. 28, 1137–1144 (2000). [CrossRef]
  75. F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” (Society of Automotive Engineers, Warrendale, Pa., 2001).
  76. V. Beushàusen, M. Knapp, A. Luczak, S. Eisenberg, P. Andresen, “Application of laser-induced fluorescence and spontaneous Raman scattering to technically applied combustion systems: four cylinder spark ignition engine and oil burning furnace,” in Laser Applications to Chemical, Biological and Environmental Analysis, Vol. 3 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 142–144.
  77. M. Knapp, A. Luczak, H. Schlüter, V. Beushausen, W. Hentschel, P. Andresen, “Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release,” Appl. Opt. 35, 4009–4017 (1996). [CrossRef] [PubMed]
  78. M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Quantitative in-cylinder NO LIF measurements with a KrF excimer laser applied to a mass-production SI engine fueled with isooctane and regular gasoline,” (Society of Automotive Engineers, Warrendale, Pa., 1997).
  79. K. Akihama, T. Fujikawa, Y. Hattori, “Laser-induced fluorescence imaging of NO in a port-fuel-injected statified-charge SI engine—correlations between NO formation region and stratified fuel distribution,” (Society of Automotive Engineers, Warrendale, Pa., 1998).
  80. H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz. “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1989).
  81. W. G. Bessler, C. Schulz, V. Sick, J. W. Daily. “A versatile modeling tool for nitric oxide LIF spectra,” in the Third Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2003), p. P11–6.
  82. A. V. Mokhov, H. B. Levinsky, C. E. van der Meij, “Temperature dependence of laser-induced fluorescence of nitric oxide in laminar premixed atmospheric-pressure flames,” Appl. Opt. 36, 3233–3243 (1997). [CrossRef] [PubMed]
  83. P. H. Paul, “Calculation of transition frequencies and roational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited