OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 24 — Aug. 20, 2003
  • pp: 4937–4945

Bridging technique for calculating the extinction efficiency of arbitrary shaped particles

Jian-Qi Zhao and Yin-Qiao Hu  »View Author Affiliations


Applied Optics, Vol. 42, Issue 24, pp. 4937-4945 (2003)
http://dx.doi.org/10.1364/AO.42.004937


View Full Text Article

Enhanced HTML    Acrobat PDF (176 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A general bridging technique is developed to calculate the extinction efficiency of particles by combining the extended Rayleigh-Debye approximation and the modified anomalous diffraction theory. Comparisons with the exact methods are performed for spheres, spheroids, infinite cylinders, and finite cylinders. The overall features of the extinction efficiencies calculated from the new, to our knowledge, bridging method are in agreement with those calculated from the exact methods. Also discussed are accuracy of the new method and its domain of applicability. The new technique can be potentially applied to particles of virtually any shapes and sizes.

© 2003 Optical Society of America

OCIS Codes
(290.2200) Scattering : Extinction
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: October 15, 2002
Revised Manuscript: February 6, 2003
Published: August 20, 2003

Citation
Jian-Qi Zhao and Yin-Qiao Hu, "Bridging technique for calculating the extinction efficiency of arbitrary shaped particles," Appl. Opt. 42, 4937-4945 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-24-4937


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805–812 (1965). [CrossRef]
  2. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971). [CrossRef]
  3. P. Barber, C. Yeh, “Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies,” Appl. Opt. 14, 2864–2872 (1975). [CrossRef] [PubMed]
  4. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991). [CrossRef]
  5. T. Wu, L. L. Tsai, “Scattering from arbitrarily-shaped lossy dielectric bodies of revolution,” Radio. Sci. 2, 709–718 (1977). [CrossRef]
  6. E. M. Purcell, C. P. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 196, 705–714 (1973). [CrossRef]
  7. P. J. Flatau, G. L. Stephens, B. T. Draine, “Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the Block-Toeplitz structure,” J. Opt. Soc. Am. A 7, 593–600 (1990). [CrossRef]
  8. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). [CrossRef]
  9. H. Y. Chen, M. F. Lskander, “Light scattering and absorption by fractal agglomerate and coagulations of smoke aerosols,” J. Mod. Opt. 37, 171–181 (1990). [CrossRef]
  10. S. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas. Propag. AP-14, 302–307 (1966).
  11. P. Yang, K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996). [CrossRef]
  12. P. Chiappetta, “Multiple scattering approach to light scattering by arbitrarily shaped particles,” J. Phys. A 13, 2101–2108 (1980). [CrossRef]
  13. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  14. M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  15. H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  16. T. W. Chen, “Generalized eikonal approximation,” Phys. Rev. C 30, 585–592 (1984). [CrossRef]
  17. J. M. Perrin, P. Chiappetta, “Light scattering by large particles, I: a new theoretical description in the eikonal picture,” Opt. Acta. 32, 907–921 (1985). [CrossRef]
  18. J. M. Perrin, P. Chiappetta, “Light scattering by large particles, II: a vectorical description in the eikonal picture,” Opt. Acta. 33, 1001–1022 (1986). [CrossRef]
  19. T. W. Chen, “Scattering of a stratified sphere in high energy approximation,” Appl. Opt. 26, 4155–4158 (1987). [CrossRef] [PubMed]
  20. J. M. Greeberg, A. S. Meltzer, “Scattering by nonspherical particles,” J. Appl. Phys. 31, 82–84 (1960). [CrossRef]
  21. D. H. Napper, “A diffraction theory approach to the total scattering by cubes,” Kolloid Z. Z. Polym. 218, 41–45 (1967). [CrossRef]
  22. P. Chýlek, J. D. Klett, “Extinction cross section of nonspherical particles in the anomalous diffraction approximation,” J. Opt. Soc. Am. A 8, 274–281 (1991). [CrossRef]
  23. P. Chýlek, J. D. Klett, “Absorption and scattering of electromagnetic radiation by prismatic columns: e anomalous diffraction approximation,” J. Opt. Soc. Am. A 8, 1713–1720 (1991). [CrossRef]
  24. D. A. Gross, P. Latimer, “General solutions for the extinction and absorption efficiencies of arbitrarily oriented cylinders by anomalous-diffraction approximation methods,” J. Opt. Soc. Am. 60, 904–907 (1970). [CrossRef]
  25. G. R. Fournier, B. T. N. Evans, “Approximation to extinction efficiency from randomly oriented circular and elliptical cylinders,” Appl. Opt. 35, 4271–4282 (1996). [CrossRef] [PubMed]
  26. Y. Liu, W. P. Arnott, J. Hallet, “Anomalous diffraction theory for arbitrarily oriented finite circular cylinders and comparison with exact T-matrix results,” Appl. Opt. 37, 5019–5030 (1998). [CrossRef]
  27. D. Deirmendjian, “Atmospheric extinction of infra-red radiation,” Q. J. R. Meteorol. Soc. 86, 371–381 (1960). [CrossRef]
  28. J. D. Klett, “Anomalous diffraction model for inversion of multispectral extinction data including absorption effects,” Appl. Opt. 23, 4499–4508 (1984). [CrossRef] [PubMed]
  29. S. A. Ackerman, G. L. Stephens, “The absorption of solar radiation by cloud droplets: an application of anomalous diffraction theory,” J. Atmos. Sci. 44, 1574–1588 (1987). [CrossRef]
  30. D. L. Mitchell, “Parameterization of the Mie extinction and absorption coefficients for water clouds,” J. Atmos. Sci. 57, 1311–1326 (2000). [CrossRef]
  31. P. Latimer, “Light scattering by ellipsoids,” J. Colloid Interface Sci. 53, 102–109 (1975). [CrossRef]
  32. P. Latimer, P. Barber, “Scattering by ellipsoids of revolution,” J. Colloid Interface Sci. 63, 310–316 (1978). [CrossRef]
  33. P. Yang, K. N. Liou, K. Wyser, D. Mitchell, “Parameterization of scattering and absorption properties of individual ice crystals,” J. Geophys. Res. D 105, 4699–4718 (2000). [CrossRef]
  34. B. T. N. Evans, G. R. Fournier, “A simple approximation to extinction efficiency valid over all size parameters,” Appl. Opt. 29, 4666–4670 (1990). [CrossRef] [PubMed]
  35. G. R. Fournier, B. T. N. Evans, “Approximation to extinction efficiency for randomly oriented spheroids,” Appl. Opt. 30, 2042–2048 (1991). [CrossRef] [PubMed]
  36. B. T. N. Evans, G. R. Fournier, “Analytic approximation to randomly oriented spheroid extinction,” Appl. Opt. 33, 5796–5804 (1994). [CrossRef] [PubMed]
  37. R. Penndorf, “Scattering and extinction coefficients for small spherical aerosols,” J. Atmos. Sci. 19, 193 (1961). [CrossRef]
  38. W. A. Farone, M. J. Robinson, “The range of validity of the anomalous diffraction approximation to electromagnetic scattering by spheres,” Appl. Opt. 7, 643–645 (1968). [CrossRef] [PubMed]
  39. G. L. Stephens, “Scattering of plane waves by soft obstacles: anomalous diffraction theory for circular cylinders,” Appl. Opt. 23, 954–959 (1984). [CrossRef] [PubMed]
  40. S. Asano, M. Sato, “Light scattering by randomly oriented spheroidal particles,” Appl. Opt. 19, 962–974 (1980). [CrossRef] [PubMed]
  41. A. Maslowska, P. J. Flatau, G. L. Stephens, “On the validity of the anomalous diffraction theory to light scattering by cubes,” Opt. Commun. 107, 35–40 (1994). [CrossRef]
  42. D. S. Jones, “High frequency scattering of electromagnetic wave,” Proc. R. Soc. London Ser. A 240, 206–213 (1957). [CrossRef]
  43. H. M. Nussenzveig, W. J. Wiscombe, “Efficiency factors in Mie scattering,” Phys. Rev. Lett. 45, 1490–1494 (1980). [CrossRef]
  44. A. Mugnai, W. J. Wiscombe, “Scattering of radiation by moderately nonspherical particles,” J. Atmos. Sci. 37, 1291–1307 (1980). [CrossRef]
  45. P. Latimer, “Predicted scattering by spheroids: comparison of approximate and exact methods,” Appl. Opt. 19, 3039–3041 (1980). [CrossRef] [PubMed]
  46. L. E. Paramonov, V. N. Lopatin, F. Y. Sidko, “Light scattering of soft spheroidal particles,” Opt. Spectrosc. (USSR) 61, 358–361 (1986).
  47. Y. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus infrared radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992). [CrossRef]
  48. M. I. Mishchenko, L. D. Travis, “Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation,” Appl. Opt. 33, 7206–7225 (1994). [CrossRef] [PubMed]
  49. T. W. Chen, “Effective sphere for spheroid in light scattering,” Opt. Commun. 114, 199–202 (1995). [CrossRef]
  50. V. Vouk, “Projected area of convex bodies,” Nature (London) 162, 330–331 (1948). [CrossRef]
  51. F. D. Bryant, P. Latimer, “Optical efficiencies of large particles of arbitrary shape and orientation,” J. Colloid Interface Sci. 30, 291–304 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited